DOI QR코드

DOI QR Code

A new nonlocal hyperbolic shear deformation theory for nanobeams embedded in an elastic medium

  • Aissani, Khadidja (Laboratoire des Structures et Materiaux Avances dans le Genie Civil et Travaux Publics, Universite de Sidi Bel Abbes, Faculte de Technologie, Departement de Genie Cvil) ;
  • Bouiadjra, Mohamed Bachir (Laboratoire des Structures et Materiaux Avances dans le Genie Civil et Travaux Publics, Universite de Sidi Bel Abbes, Faculte de Technologie, Departement de Genie Cvil) ;
  • Ahouel, Mama (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Tounsi, Abdelouahed (Laboratoire des Structures et Materiaux Avances dans le Genie Civil et Travaux Publics, Universite de Sidi Bel Abbes, Faculte de Technologie, Departement de Genie Cvil)
  • Received : 2015.05.12
  • Accepted : 2015.07.07
  • Published : 2015.08.25

Abstract

This work presents a new nonlocal hyperbolic shear deformation beam theory for the static, buckling and vibration of nanoscale-beams embedded in an elastic medium. The present model is able to capture both the nonlocal parameter and the shear deformation effect without employing shear correction factor. The nonlocal parameter accounts for the small size effects when dealing with nanosize structures such as nanobeams. Based on the nonlocal differential constitutive relations of Eringen, the equations of motion of the nanoscale-beam are obtained using Hamilton's principle. The effect of the surrounding elastic medium on the deflections, critical buckling loads and frequencies of the nanobeam is investigated. Both Winkler-type and Pasternak-type foundation models are used to simulate the interaction of the nanobeam with the surrounding elastic medium. Analytical solutions are presented for a simply supported nanoscale-beam, and the obtained results compare well with those predicted by the other nonlocal theories available in literature.

Keywords

Acknowledgement

Supported by : Algerian National Thematic Agency of Research in Science and Technology (ATRST), university of Sidi Bel Abbes (UDL SBA)

References

  1. Adda Bedia, W., Benzair, A., Semmah, A., Tounsi, A. and Mahmoud, S.R. (2015), "On the thermal buckling characteristics of armchair single-walled carbon nanotube embedded in an elastic medium based on nonlocal continuum elasticity", Brazil. J. Phys., 45, 225-233. https://doi.org/10.1007/s13538-015-0306-2
  2. Ait Amar Meziane, M., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
  3. Ait Atmane, H., Tounsi, A., Mechab, I. and Adda Bedia, E.A. (2010), "Free vibration analysis of functionally graded plates resting on Winkler-Pasternak elastic foundations using a new shear deformation theory", Int. J. Mech. Mater. Des., 6, 113-121. https://doi.org/10.1007/s10999-010-9110-x
  4. Ait Yahia, S., Ait Atmane, H., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
  5. Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", Compos. Struct., 125, 621-630. https://doi.org/10.1016/j.compstruct.2014.12.070
  6. Amara, K., Tounsi, A., Mechab, I. and Adda-Bedia, E.A. (2010), "Nonlocal elasticity effect on column buckling of multiwalled carbon nanotubes under temperature field", Appl. Math. Model., 34, 3933-3942. https://doi.org/10.1016/j.apm.2010.03.029
  7. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos. Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
  8. Belkorissat, I., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063
  9. Benachour, A., Daouadji, H.T., Ait Atmane, H., Tounsi, A. and Meftah, S.A. (2011), "A four variable refined plate theory for free vibrations of functionally graded plates with arbitrary gradient", Compos. Part B, 42, 1386-1394. https://doi.org/10.1016/j.compositesb.2011.05.032
  10. Benguediab, S., Tounsi, A., Zidour, M. and Semmah, A. (2014a), "Chirality and scale effects on mechanical buckling properties of zigzag double-walled carbon nanotubes", Compos. Part B, 57, 21-24. https://doi.org/10.1016/j.compositesb.2013.08.020
  11. Benguediab, S., Semmah, A., Larbi Chaht, F., Mouaz, S. and Tounsi, A. (2014b), "An investigation on the characteristics of bending, buckling and vibration of nanobeams via nonlocal beam theory", Int. J. Comput. Meth., 11(6), 1350085 https://doi.org/10.1142/S0219876213500850
  12. Bennai, R., Ait Atmane, H. and Tounsi, A. (2015), "A new higher-order shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct. (In press)
  13. Benzair, A., Tounsi, A., Besseghier, A., Heireche, H., Moulay, N. and Boumia, L. (2008), "The thermal effect on vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory", J. Phys. D: Appl. Phys., 41, 225404. https://doi.org/10.1088/0022-3727/41/22/225404
  14. Berrabah, H.M., Tounsi, A., Semmah, A. and Adda Bedia, E.A. (2013), "Comparison of various refined nonlocal beam theories for bending, vibration and buckling analysis of nanobeams", Struct. Eng. Mech., 48(3), 351-365. https://doi.org/10.12989/sem.2013.48.3.351
  15. Bessaim, A., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Adda Bedia, E.A. (2013), "A new higher-order shear and normal deformation theory for the static and free vibration analysis of sandwich plates with functionally graded isotropic face sheets", J. Sandw. Struct. Mater., 15, 671-703. https://doi.org/10.1177/1099636213498888
  16. Besseghier, A., Tounsi, A., Houari, M.S.A., Benzair, A., Boumia, L. and Heireche, H. (2011), "Thermal effect on wave propagation in double-walled carbon nanotubes embedded in a polymer matrix using nonlocal elasticity", Physica E, 43, 1379-1386. https://doi.org/10.1016/j.physe.2011.03.008
  17. Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A. and Benzair, A. (2015), "Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix", Adv. Nano Res., 3(1), 29-37. https://doi.org/10.12989/anr.2015.3.1.029
  18. Bouchafa, A., Bachir Bouiadjra, M., Houari, M.S.A. and Tounsi, A. (2015), "Thermal stresses and deflections of functionally graded sandwich plates using a new refined hyperbolic shear deformation theory", Steel Compos. Struct., 18(6), 1493-1515. https://doi.org/10.12989/scs.2015.18.6.1493
  19. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013) "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
  20. Bourada, M., Tounsi, A., Houari, M.S.A. and Adda Bedia, E.A. (2012), "A new four-variable refined plate theory for thermal buckling analysis of functionally graded sandwich plates", J. Sandw. Struct. Mater., 14, 5-33. https://doi.org/10.1177/1099636211426386
  21. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
  22. Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A., (2014), "A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates", Int. J. Comput. Meth., 11(6), 1350082. https://doi.org/10.1142/S0219876213500825
  23. Bower, C., Rosen, R., Jin, L., Han, J. and Zhou, O. (1999), "Deformation of carbon nanotubes in nanotube-polymer composites", Appl. Phys. Lett. 74, 3317. https://doi.org/10.1063/1.123330
  24. Chattibi, F., Benrahou, K.H., Benachour, A., Nedri, K. and Tounsi, A. (2015), "Thermomechanical effects on the bending of antisymmetric cross-ply composite plates using a four variable sinusoidal theory", Steel Compos. Struct., 19(1), 93-110. https://doi.org/10.12989/scs.2015.19.1.093
  25. Draiche, K., Tounsi, A. and Khalfi, Y. (2014), "A trigonometric four variable plate theory for free vibration of rectangular composite plates with patch mass", Steel Compos. Struct., 17(1), 69-81. https://doi.org/10.12989/scs.2014.17.1.069
  26. El Meiche, N., Tounsi, A., Ziane, N., Mechab, I. and Adda Bedia, E.A. (2011), "A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate", Int. J. Mech. Sci., 53, 237-247. https://doi.org/10.1016/j.ijmecsci.2011.01.004
  27. Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013), "Vibration analysis of Euler-Bernoulli nanobeams by using finite element method", Appl. Math. Model., 37(7), 4787-4797. https://doi.org/10.1016/j.apm.2012.10.016
  28. Eltaher, M.A., Emam, S.A. and Mahmoud, F.F., (2012), "Free vibration analysis of functionally graded size-dependent nanobeams", Appl. Math. Comput., 218(14), 7406-7420. https://doi.org/10.1016/j.amc.2011.12.090
  29. Eltaher, M.A., Khairy, A., Sadoun, A.M. and Omar, F.A., (2014), "Static and buckling analysis of functionally graded Timoshenko nanobeams", Appl. Math. Comput., 229, 283-295. https://doi.org/10.1016/j.amc.2013.12.072
  30. Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10, 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
  31. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
  32. Fekrar, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2014), "A new five-unknown refined theory based on neutral surface position for bending analysis of exponential graded plates", Meccanica, 49, 795-810. https://doi.org/10.1007/s11012-013-9827-3
  33. Fleck, N.A. and Hutchinson, J.W. (1997), "Strain gradient plasticity", Adv. Appl. Mech., 33, 296.
  34. Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
  35. Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Adda Bedia, E.A. (2014), "A new quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", ASCE J. Eng. Mech., 140, 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
  36. Heireche, H., Tounsi, A., Benzair, A., Maachou, M. and Adda Bedia, EA. (2008a), "Sound wave propagation in single-walled carbon nanotubes using nonlocal elasticity", Physica E., 40, 2791-2799. https://doi.org/10.1016/j.physe.2007.12.021
  37. Heireche, H., Tounsi, A. and Benzair, A. (2008b), "Scale effect on wave propagation of double-walled carbon nanotubes with initial axial loading", Nanotechnology, 19, 185703. https://doi.org/10.1088/0957-4484/19/18/185703
  38. Houari, M.S.A., Tounsi, A. and Anwar Beg, O. (2013), "Thermoelastic bending analysis of functionally graded sandwich plates using a new higher order shear and normal deformation theory", Int. J. Mech. Sci., 76, 467-479.
  39. Idlbi, A., Karama, M. and Touratie, M. (1997), "Comparison of various laminated plate theories", Compos. Struct., 37, 173-184. https://doi.org/10.1016/S0263-8223(97)80010-4
  40. Khalfi, Y., Houari, M.S.A. and Tounsi, A. (2014), "A refined and simple shear deformation theory for thermal buckling of solar functionally graded plates on elastic foundation", Int. J. Comput. Meth., 11(5), 135007.
  41. Kuzumaki, T., Miyazawa, K., Ichinose, H. and Ito, K. (1998), "Processing of carbon nanotube reinforced aluminum composite", J. Mater. Res., 13, 2445. https://doi.org/10.1557/JMR.1998.0340
  42. Larbi Chaht, F., Kaci, A., Houari, M.S.A., Tounsi, A., Anwar Beg, O. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425
  43. Lu, P., Lee, H.P., Lu, C. and Zhang, P.Q. (2007), "Application of nonlocal beam models for carbon nanotubes", Int. J. Solid. Struct., 44, 5289-5300. https://doi.org/10.1016/j.ijsolstr.2006.12.034
  44. Lu, P. (2007), "Dynamic analysis of axially prestressed micro/nanobeam structures based on nonlocal beam theory", J. Appl. Phys., 101, 073504. https://doi.org/10.1063/1.2717140
  45. Mahi, A., Adda Bedia, E.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39, 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
  46. Murmu, T. and Pradhan, S.C. (2009a), "Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM", Physica E, 41, 1232-1239. https://doi.org/10.1016/j.physe.2009.02.004
  47. Murmu, T. and Pradhan, S.C. (2009b), "Thermo-mechanical vibration of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory", Comput. Mater. Sci., 46, 854-859. https://doi.org/10.1016/j.commatsci.2009.04.019
  48. Murmu, T. and Pradhan, S. (2010), "Thermal effects on the stability of embedded carbon nanotubes", Comput. Mater. Sci., 47(3), 721-726. https://doi.org/10.1016/j.commatsci.2009.10.015
  49. Mustapha, K.B. and Zhong, Z.W. (2010), "The thermo-mechanical vibration of a single-walled carbon nanotube studied using the Bubnov-Galerkin method", Physica E., 43, 375-381. https://doi.org/10.1016/j.physe.2010.08.012
  50. Narendar, S. and Gopalakrishnan, S. (2011a), "Critical buckling temperature of single-walled carbon nanotubes embedded in a one-parameter elastic medium based on nonlocal continuum mechanics", Physica E, 43, 1185-1191. https://doi.org/10.1016/j.physe.2011.01.026
  51. Narendar, S. and Gopalakrishnan, S. (2011b), "Nonlocal wave propagation in rotating nanotube", Resul. Phys., 1, 17-25. https://doi.org/10.1016/j.rinp.2011.06.002
  52. Nedri, K., El Meiche, N. and Tounsi, A. (2014), "Free vibration analysis of laminated composite plates resting on elastic foundations by using a refined hyperbolic shear deformation theory", Mech. Compos. Mater., 49(6), 641-650. https://doi.org/10.1007/s11029-013-9380-0
  53. Ould Larbi, L., Kaci, A., Houari, M.S.A. and Tounsi, A. (2013), "An efficient shear deformation beam theory based on neutral surface position for bending and free vibration of functionally graded beams", Mech. Bas. Des. Struct. Mach., 41, 421-433. https://doi.org/10.1080/15397734.2013.763713
  54. Pasternak, P.L. (1954), "On a new method of analysis of an elastic foundation by means of two foundation constants", Cosudarstrennoe Izdatelstvo Literaturi po Stroitelstvu i Arkhitekture, Moscow, 1-56. (In Russian)
  55. Pijaudier-Cabot, G. and Bazant, Z.P. (1987), "Nonlocal damage theory", ASCE J. Eng. Mech., 113, 1512-1533. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:10(1512)
  56. Pradhan, S.C., Bazant, Z.P. and Murmu, T. (2009a), "Differential quadrature method for vibration analysis of beam on Winkler foundation based on nonlocal elastic theory", J. Inst. Eng. (India) Metallurgy Mater. Eng. Div., 89, 3-12.
  57. Pradhan, S.C., Bazant, Z.P. and Murmu, T. (2009b), "Small-scale effect on vibration analysis of single-walled carbon nanotubes embedded in an elastic medium using nonlocal elasticity theory", J. Appl. Phys., 105, 124306. https://doi.org/10.1063/1.3151703
  58. Qian, D., Dickey, E.C., Andrews, R., Bazant, Z.P. and Rantell, T. (2000), Appl. Phys. Lett. 76, 2868. https://doi.org/10.1063/1.126500
  59. Reddy, J.N. and Pang, S.D. (2008), "Nonlocal continuum theories of beams for the analysis of carbon nanotubes", J. Appl. Phys., 103, 023511. https://doi.org/10.1063/1.2833431
  60. Reddy, J.N. (1997), "On locking-free shear deformable beam finite elements", Comput. Meth. Appl. Mech. Eng., 149, 113-132. https://doi.org/10.1016/S0045-7825(97)00075-3
  61. Ru, C.Q. (2001), "Axially compressed buckling of a doublewalled carbon nanotube embedded in an elastic medium", J. Mech. Phys. Solid., 49, 1265. https://doi.org/10.1016/S0022-5096(00)00079-X
  62. Saidi, H., Houari, M.S.A., Tounsi, A., Bazant, Z.P. and Adda Bedia, E.A. (2013), "Thermo-mechanical bending response with stretching effect of functionally graded sandwich plates using a novel shear deformation theory", Steel Compos. Struct., 15, 221-245. https://doi.org/10.12989/scs.2013.15.2.221
  63. Schadler, LS., Giannaris, S.C., Bazant, Z.P. and Ajayan, P.M. (1998), Appl. Phys. Lett., 73, 3842. https://doi.org/10.1063/1.122911
  64. Song, J., Shen, J. and Li, X.F. (2010), "Effects of initial axial stress on waves propagating in carbon nanotubes using a generalized nonlocal model", Comput. Mater. Sci., 49, 518-523. https://doi.org/10.1016/j.commatsci.2010.05.043
  65. Tounsi, A., Heireche, H., Berrabah, H.M., Benzair, A. and Boumia, L. (2008), "Effect of small size on wave propagation in double-walled carbon nanotubes under temperature field", J. Appl. Phys., 104, 104301. https://doi.org/10.1063/1.3018330
  66. Tounsi, A., Semmah, A. and Bousahla, A.A. (2013a), "Thermal buckling behavior of nanobeams using an efficient higher-order nonlocal beam theory", ASCE J. Nanomech. Micromech., 3, 37-42. https://doi.org/10.1061/(ASCE)NM.2153-5477.0000057
  67. Tounsi, A., Benguediab, S., Adda Bedia, E.A., Semmah, A. and Zidour, M. (2013b), "Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes", Adv. Nano Res., 1(1), 1-11. https://doi.org/10.12989/anr.2013.1.1.001
  68. Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013c), A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Tech., 24, 209-220. https://doi.org/10.1016/j.ast.2011.11.009
  69. Yang, F., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solid. Struct., 39, 2731. https://doi.org/10.1016/S0020-7683(02)00152-X
  70. Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693
  71. Zhang, Y.Q., Liu, G.R. and Wang, J.S. (2004), "Small-scale effects on buckling of multiwalled carbon nanotubes under axial compression", Phys. Rev. B., 70, 205430. https://doi.org/10.1103/PhysRevB.70.205430
  72. Zhang, Y.Q., Liu, G.R. and Han, X. (2006), "Effect of small length scale on elastic buckling of multi-walled carbon nanotubes under radial pressure", Phys. Lett. A, 349, 370-376. https://doi.org/10.1016/j.physleta.2005.09.036
  73. Zhang, Y.Q., Liu, G.R. and Xie, X.Y. (2005), "Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity", Phys. Rev. B., 71, 195404. https://doi.org/10.1103/PhysRevB.71.195404
  74. Zhou, S.J. and Li, Z.Q. (2001), J. Shandong Univ. Sci. Technol, Nat. Sci., 31, 401.
  75. Zidi, M., Tounsi, A., Houari, M.S.A., Adda Bedia, E.A. and Anwar Beg, O. (2014), "Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory", Aerosp. Sci. Tech., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001
  76. Zidour, M., Daouadji, T.H., Benrahou, K.H., Tounsi, A., Adda Bedia, E.A. and Hadji, L. (2014), "Buckling analysis of chiral single-walled carbon nanotubes by using the nonlocal Timoshenko beam theory", Mech. Compos. Mater., 50(1), 95-104. https://doi.org/10.1007/s11029-014-9396-0
  77. Zidour, M., Benrahou, K.H., Semmah, A., Naceri, M., Belhadj, H.A. and Bakhti, K. et al. (2012), "The thermal effect on vibration of zigzag single walled carbon nanotubes using nonlocal Timoshenko beam theory", Comput. Mater. Sci., 51, 252-260. https://doi.org/10.1016/j.commatsci.2011.07.021
  78. Wang, Q. and Liew, K.M. (2007), "Application of nonlocal continuum mechanics to static analysis of micro- and nano-structures", Phys. Lett. A, 363, 236-242. https://doi.org/10.1016/j.physleta.2006.10.093
  79. Wang, Q., Varadan, V.K. and Quek, S.T. (2006), "Small scale effect on elastic buckling of carbon nanotubes with nonlocal continuum models", Phys. Lett. A, 357, 130-135. https://doi.org/10.1016/j.physleta.2006.04.026
  80. Wagner, H.D., Lourie, O., Feldman, Y. and Tenne, R. (1998), "Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix", Appl. Phys. Lett., 72, 188. https://doi.org/10.1063/1.120680

Cited by

  1. Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium vol.18, pp.6, 2016, https://doi.org/10.12989/sss.2016.18.6.1125
  2. Critical buckling load of chiral double-walled carbon nanotube using non-local theory elasticity vol.3, pp.4, 2015, https://doi.org/10.12989/anr.2015.3.4.193
  3. Free vibration analysis of chiral double-walled carbon nanotube using non-local elasticity theory vol.4, pp.1, 2016, https://doi.org/10.12989/anr.2016.4.1.031
  4. A nonlocal quasi-3D trigonometric plate model for free vibration behaviour of micro/nanoscale plates vol.56, pp.2, 2015, https://doi.org/10.12989/sem.2015.56.2.223
  5. Forced Vibration Analysis of Functionally Graded Nanobeams vol.09, pp.07, 2017, https://doi.org/10.1142/S1758825117501009
  6. A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation vol.20, pp.2, 2016, https://doi.org/10.12989/scs.2016.20.2.227
  7. Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept vol.20, pp.5, 2016, https://doi.org/10.12989/scs.2016.20.5.963
  8. Resonance frequencies of size dependent perforated nonlocal nanobeam vol.24, pp.9, 2018, https://doi.org/10.1007/s00542-018-3910-6
  9. Forced vibration analysis of cracked nanobeams vol.40, pp.8, 2018, https://doi.org/10.1007/s40430-018-1315-1
  10. Bending and stability analysis of size-dependent compositionally graded Timoshenko nanobeams with porosities vol.6, pp.1, 2017, https://doi.org/10.12989/amr.2017.6.1.045
  11. A refined nonlocal hyperbolic shear deformation beam model for bending and dynamic analysis of nanoscale beams vol.5, pp.2, 2015, https://doi.org/10.12989/anr.2017.5.2.113
  12. Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory vol.19, pp.6, 2015, https://doi.org/10.12989/sss.2017.19.6.601
  13. Surface effects on vibration and buckling behavior of embedded nanoarches vol.64, pp.1, 2017, https://doi.org/10.12989/sem.2017.64.1.001
  14. Dynamic characteristics of curved inhomogeneous nonlocal porous beams in thermal environment vol.64, pp.1, 2015, https://doi.org/10.12989/sem.2017.64.1.121
  15. Vibration analysis of FG nanoplates with nanovoids on viscoelastic substrate under hygro-thermo-mechanical loading using nonlocal strain gradient theory vol.64, pp.6, 2015, https://doi.org/10.12989/sem.2017.64.6.683
  16. Forced vibration analysis of cracked functionally graded microbeams vol.6, pp.1, 2015, https://doi.org/10.12989/anr.2018.6.1.039
  17. Wave dispersion characteristics of nonlocal strain gradient double-layered graphene sheets in hygro-thermal environments vol.65, pp.6, 2018, https://doi.org/10.12989/sem.2018.65.6.645
  18. A unified formulation for modeling of inhomogeneous nonlocal beams vol.66, pp.3, 2015, https://doi.org/10.12989/sem.2018.66.3.369
  19. Bending of a cracked functionally graded nanobeam vol.6, pp.3, 2015, https://doi.org/10.12989/anr.2018.6.3.219
  20. Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory vol.6, pp.3, 2018, https://doi.org/10.12989/anr.2018.6.3.279
  21. Buckling analysis of nanoplate-type temperature-dependent heterogeneous materials vol.7, pp.1, 2015, https://doi.org/10.12989/anr.2019.7.1.051
  22. Theoretical analysis of chirality and scale effects on critical buckling load of zigzag triple walled carbon nanotubes under axial compression embedded in polymeric matrix vol.70, pp.3, 2019, https://doi.org/10.12989/sem.2019.70.3.269
  23. A review of mechanical analyses of rectangular nanobeams and single-, double-, and multi-walled carbon nanotubes using Eringen’s nonlocal elasticity theory vol.89, pp.9, 2015, https://doi.org/10.1007/s00419-019-01542-z
  24. Flexoelectric effects on dynamic response characteristics of nonlocal piezoelectric material beam vol.8, pp.4, 2015, https://doi.org/10.12989/amr.2019.8.4.259
  25. Mechanical-hygro-thermal vibrations of functionally graded porous plates with nonlocal and strain gradient effects vol.7, pp.2, 2015, https://doi.org/10.12989/aas.2020.7.2.169
  26. A review of effects of partial dynamic loading on dynamic response of nonlocal functionally graded material beams vol.9, pp.1, 2015, https://doi.org/10.12989/amr.2020.9.1.033
  27. A comprehensive review on the modeling of smart piezoelectric nanostructures vol.74, pp.5, 2015, https://doi.org/10.12989/sem.2020.74.5.611
  28. Vibration analysis of nonlocal strain gradient porous FG composite plates coupled by visco-elastic foundation based on DQM vol.9, pp.3, 2020, https://doi.org/10.12989/csm.2020.9.3.201
  29. Dynamic response of size-dependent porous functionally graded beams under thermal and moving load using a numerical approach vol.7, pp.2, 2015, https://doi.org/10.12989/smm.2020.7.2.069
  30. On scale-dependent stability analysis of functionally graded magneto-electro-thermo-elastic cylindrical nanoshells vol.75, pp.6, 2015, https://doi.org/10.12989/sem.2020.75.6.659
  31. Porosity effects on post-buckling behavior of geometrically imperfect metal foam doubly-curved shells with stiffeners vol.75, pp.6, 2015, https://doi.org/10.12989/sem.2020.75.6.701
  32. Nonlocal nonlinear stability of higher-order porous beams via Chebyshev-Ritz method vol.76, pp.3, 2015, https://doi.org/10.12989/sem.2020.76.3.413
  33. Wave propagation analysis of a rectangular sandwich composite plate with tunable magneto-rheological fluid core vol.27, pp.11, 2015, https://doi.org/10.1177/1077546320938189
  34. On static buckling of multilayered carbon nanotubes reinforced composite nanobeams supported on non-linear elastic foundations vol.40, pp.3, 2021, https://doi.org/10.12989/scs.2021.40.3.389