• Title/Summary/Keyword: Nanoporous structure

Search Result 82, Processing Time 0.027 seconds

Preparation of Porous Gold for Sensor Applications (센서 응용을 위한 다공성 골드의 제조)

  • Kim, Young-Hun;Kim, He-Ro;Ko, Jae-Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.32-37
    • /
    • 2008
  • For a development of U-safety system, liquid/gas-sensors that are easy to carry and install in any place are needed. Therefore, in this work, we prepared porous gold using a templating method with nanoporous alumina, and it was used as sensing materials and electrode. The resulting materials showed high purity macroporous structure with $200{\sim}300\;nm$ of window-pore and $4.8\;m^2/g$ of surface area. Because porous gold had good electric conductivity, convenience to measure the change of electric resistivity and good reproducibility, it could be used as potential sensing materials. As a proof-of-concept test, the detection test for mercury ion was carried out.

  • PDF

Research Trend of Crystalline Porous Materials for Hydrogen Isotope Separation via Kinetic Quantum Sieving (운동 양자 체(Kinetic Quantum Sieving) 효과를 가진 나노다공성 물질을 활용한 수소동위원소 분리 동향)

  • Lee, Seulji;Oh, Hyunchul
    • Korean Journal of Materials Research
    • /
    • v.31 no.8
    • /
    • pp.465-470
    • /
    • 2021
  • Deuterium is a crucial clean energy source required for nuclear fusion and is a future resource needed in various industries and scientific fields. However, it is not easy to enrich deuterium because the proportion of deuterium in the hydrogen mixture is scarce, at approximately 0.016 %. Furthermore, the physical and chemical properties of the hydrogen mixture and deuterium are very similar. Therefore, the efficient separation of deuterium from hydrogen mixtures is often a significant challenge when using modern separation technologies. Recently, to effectively separate deuterium, studies utilizing the 'Kinetic Quantum Sieving Effect (KQS)' of porous materials are increasing. Therefore, in this review, two different strategies have been discussed for improving KQS efficiency for hydrogen isotope separation performance using nanoporous materials. One is the gating effect, which precisely controls the aperture locally by adjusting the temperature and pressure. The second is the breathing phenomenon, utilizing the volume change of the structure from closed system to open system. It has been reported that efficient hydrogen isotope separation is possible using these two methods, and each of these effects is described in detail in this review. In addition, a specific-isotope responsive system (e.g., 2nd breathing effect in MIL-53) has recently been discovered and is described here as well.

Structure and Property Analysis of Nanoporous Low Dielectric Constant SiCOH Thin Films

  • Heo, Gyu-Yong;Lee, Mun-Ho;Lee, Si-U;Park, Yeong-Hui
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.167-169
    • /
    • 2009
  • We have carried out quantitative structure and property analysis of the nanoporous structures of low dielectric constant (low-k) carbon-doped silicon oxide (SiCOH) films, which were deposited with plasma enhanced chemical vapor deposition (PECVD) using vinyltrimethylsilane (VTMS), divinyldimethylsilane (DVDMS), and tetravinylsilane (TVS) as precursor and oxygen as an oxidant gas. We found that the SiCOH film using VTMS only showed well defined spherical nanopores within the film after thermal annealing at $450^{\circ}C$ for 4 h. The average pore radius of the generated nanopores within VTMS SiCOH film was 1.21 nm with narrow size distribution of 0.2. It was noted that thermally labile $C_{x}H_{y}$ phase and Si-$CH_3$ was removed to make nanopore within the film by thermal annealing. Consequently, this induced that decrease of average electron density from 387 to $321\;nm^{-3}$ with increasing annealing temperature up to $450^{\circ}C$ and taking a longer annealing time up to 4 h. However, the other SiCOH films showed featureless scattering profiles irrespective of annealing conditions and the decreases of electron density were smaller than VTMS SiCOH film. Because, with more vinyl groups are introduced in original precursor molecule, films contain more organic phase with less volatile characteristic due to the crosslinking of vinyl groups. Collectively, the presenting findings show that the organosilane containing vinyl group was quite effective to deposit SiCOH/$C_{x}H_{y}$ dual phase films, and post annealing has an important role on generation of pores with the SiCOH film.

  • PDF

Adsorption Characteristics of Nitrogen in Carbonaceous Micropore Structures with Local Molecular Orientation (국부분자배향의 탄소 미세기공 구조에 대한 질소의 흡착 특성)

  • Seo, Yang Gon
    • Clean Technology
    • /
    • v.28 no.3
    • /
    • pp.249-257
    • /
    • 2022
  • The adsorption equilibria of nitrogen on a region of nanoporous carbonaceous adsorbent with local molecular orientation (LMO) were calculated by grand canonical Monte Carlo simulation at 77.16 K. Regions of LMO of identical size were arranged on a regular lattice with uniform spacing. Microporosity was predominately introduced to the model by removing successive out-of-plane domains from the regions of LMO and tilting pores were generated by tilting the basic structure units. This pore structure is a more realistic model than slit-shaped pores for studying adsorption in nanoporous carbon adsorbents. Their porosities, surface areas, and pore size distributions according to constrained nonlinear optimization were also reported. The adsorption in slit shaped pores was also reported for reference. In the slit shaped pores, a clear hysteresis loop was observed in pores of greater than 5 times the nitrogen molecule size, and in capillary condensation and reverse condensation, evaporation occurred immediately at one pressure. In the LMO pore model, three series of local condensations at the basal slip plane, armchair slip plane and interconnected channel were observed during adsorption at pore sizes greater than about 6 times the nitrogen molecular size. In the hysteresis loop, on the other hand, evaporation occurred at one or two pressures during desorption.

Effect of Electrochemical Oxidation-Reduction Cycles on Surface Structures and Electrocatalytic Oxygen Reduction Activity of Au Electrodes

  • Lim, Taejung;Kim, Jongwon
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.5
    • /
    • pp.310-316
    • /
    • 2016
  • Oxidation-reduction cycling (ORC) procedures are widely used for cleaning nanoparticle surfaces when investigating their electrocatalytic activities. In this work, the effect of ORC on the surface structures and electrocatalytic oxygen reduction activity of Au electrodes is analyzed. Different structural changes and variations in electrocatalysis are observed depending on the initial structure of the Au electrodes, such as flat bulk, nanoporous, nanoplate, or dendritic Au. In particular, dendritic Au structures lost their sharp-edge morphology during the ORC process, resulting in a significant decrease in its electrocatalytic oxygen reduction activity. The results shown in this paper provide an insight into the pretreatment of nanoparticle-based electrodes during investigation of their electrocatalytic activities.

Photoelectrochemical characterization of surface-modified CuInS2 nanorod arrays prepared via template-assisted growth and transfer

  • Yang, Wooseok;Kim, Jimin;Oh, Yunjung;Moon, Jooho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.401-401
    • /
    • 2016
  • Although vertically aligned one-dimensional (1D) structure has been considered as efficient forms for photoelectrode, development of efficient 1D nanostructured photocathode are still required. In this sense, we recently demonstrated a simple fabrication route for CuInS2 (CIS) nanorod arrays from aqueous solution by template-assisted growth-and-transfer method and their feasibility as a photoelectrode for water splitting. In this study, we further evaluated the photoelectrochemical properties surface-modified CIS nanorod arrays. Surface modification with CdS and ZnS was performed by successive ion layer adsorption and reaction (SILAR) method, which is well known as suitable technique for conformal coating throughout nanoporous structure. With surface modification of CdS and ZnS, both photoelectrochemical performance and stability of CuInS2 nanorod arrays were improved by shifting of the flat-band potential, which was analyzed both onset potential and Mott-schottky plot.

  • PDF

Porous bioactive glass ceramics for bone-tissue regeneration

  • Yun, Hui-Suk;Kim, Seung-Eon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.7.2-7.2
    • /
    • 2009
  • Nanoporous bioactive glass(NBG) ceramic with well interconnected pore structures were fabricated bytriblock copolymer templating and sol-gel techniques. Hierarchically porous BGbeads were also successfully synthesized by controlling the condition of solvent.The beads have hierarchically nano- and macro-pore structure with a sizesbetween several tens nanometers and several hundred micrometers. Both NBG andBG beads show superior bone-forming bioactivity and good in vitrobiodegradability. Biocompatibility both in vitro and in vivo were examed andwas revealed that it largely relies on the pore morphology as well ascomposition. Our synthetic process can be adapted for the purpose of preparingvarious bioceramics, which have excellent potential applications in the fieldof biomaterials such as tissue engineering and drug storage.

  • PDF

Heat treatment effect on synthesis of mesoporous silica (Mesoporous Silica의 제조에 열처리가 끼치는 영향)

  • Park, Kyu-Sung;Kim, Duk-Su;Kim, Il-Doo;Kim, Ho-Gi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.1113-1115
    • /
    • 2002
  • Mesoporous silica, MCM-41, was synthesized by sol-gel method. The organic structure-directing agent must be removed to make the desired proes. To achieve this, alternative calcination method using microwave oven was adapted to this removal stage. Microwave calcination was shown to provide a novel, rapid and inexpensive method of praparing nanoporous material. It was studied how the porous structure, surface area and pore size distribution were changes under microwave calcination.

  • PDF

The Synthesis of Silica Aerogel in the Macroporous Ceramic Structure by Sono-gel Process and Supercritical Drying Process (초음파 겔화 공정과 초임계 건조 공정을 이용한 다공성 세라믹스 구조체 내부에 실리카 에어로겔 합성)

  • Hong, Sun-Wook;Song, In-Hyuck;Park, Young-Jo;Yun, Hui-Suk;Hwang, Ki-Young;Rhee, Young-Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.553-559
    • /
    • 2010
  • The synthesis behavior of nanoporous silica aerogel in the macroporous ceramic structure was observed using TEOS as a source material and glycerol as a DCCA(dry control chemical additive). Silica aerogel in the macroporous ceramic structure were synthesized through a sono-gel process. The wet gel in the macroporous ceramic structure were aged in ethanol for 72 h at $50^{\circ}C$. The aged wet gel was dried under supercritical drying condition. The addition of glycerol has a role of giving the uniform pore size distribution. The reproducibility of aerogel in the macroporous ceramic was improved in the glycerol(0.05 mol%) added to the silica sol and TEOS : $H_2O$=1 : 12.