DOI QR코드

DOI QR Code

Adsorption Characteristics of Nitrogen in Carbonaceous Micropore Structures with Local Molecular Orientation

국부분자배향의 탄소 미세기공 구조에 대한 질소의 흡착 특성

  • Seo, Yang Gon (Department of Chemical Engineering/RIGET, Gyeongsang National University)
  • 서양곤 (경상대학교 화학공학과/그린에너지융합연구소)
  • Received : 2022.08.09
  • Accepted : 2022.08.29
  • Published : 2022.09.30

Abstract

The adsorption equilibria of nitrogen on a region of nanoporous carbonaceous adsorbent with local molecular orientation (LMO) were calculated by grand canonical Monte Carlo simulation at 77.16 K. Regions of LMO of identical size were arranged on a regular lattice with uniform spacing. Microporosity was predominately introduced to the model by removing successive out-of-plane domains from the regions of LMO and tilting pores were generated by tilting the basic structure units. This pore structure is a more realistic model than slit-shaped pores for studying adsorption in nanoporous carbon adsorbents. Their porosities, surface areas, and pore size distributions according to constrained nonlinear optimization were also reported. The adsorption in slit shaped pores was also reported for reference. In the slit shaped pores, a clear hysteresis loop was observed in pores of greater than 5 times the nitrogen molecule size, and in capillary condensation and reverse condensation, evaporation occurred immediately at one pressure. In the LMO pore model, three series of local condensations at the basal slip plane, armchair slip plane and interconnected channel were observed during adsorption at pore sizes greater than about 6 times the nitrogen molecular size. In the hysteresis loop, on the other hand, evaporation occurred at one or two pressures during desorption.

Grand canonical Monte Carlo 전산모사 방법에 의하여 77.16 K에서 국부분자배향 모델을 가지는 나노 기공 탄소 흡착제에 대한 질소의 평형 흡착량을 계산하였다. 국부분자배향 모델은 일정한 공간을 가지는 규칙적인 격자에 동일한 크기를 배열하였다. 국부분자배향 영역의 연속적인 평면의 직교(out-of-plane)의 제거에 의해 미세기공을 도입하였고, 기본구조단위의 기울임을 통해 기울어진 기공을 도입하였다. 이런 기공 구조는 틈새형 기공 구조보다 나노기공을 가지는 탄소계 흡착제의 흡착 연구에 보다 현실적인 모델이 된다. 또한 이들 기공 구조에 대해 기공도, 표면적 그리고 제한된 비선형 최적화 기법을 활용하여 기공크기분포에 구하였다. 또한 참고 자료로써 틈새형 기공에서의 등온 평형흡착량도 계산하였다. 틈새형 기공에서는 질소분자의 5배 이상의 기공에서 hysteresis 루프가 관찰되었고, 모세관 응축과 응축의 역과정인 증발이 한 압력에서 한 번에 일어났다. 국부분자배향 기공모델에서는 질소분자의 크기의 6배 큰 기공에서 기저 슬립면, armchair 슬립면 그리고 상호연결된 채널에서 각각 세 가지 연속적인 응축이 관찰되었다. 탈착 과정의 hysteresis 루프에서는 단일 또는 두 압력에서 응축의 반대인 증발이 관찰되었다.

Keywords

References

  1. https://www.marketstandmarkets.com/Market-Reports (accessed April 2022).
  2. Yang, R. T., Adsorbents: Fundamentals and Applications, John Wiley & Sons, Hoboken, New Jersey (2003).
  3. Barrer, R. M., "The Sorption of Polar and Non-polar Gases by Zeolites," Proc. Roy. Soc. A, 167, 392-420 (1938).
  4. Nicholas, J. B., Hopfinger, A. J., Trouw, F. R., and Iton L. E., "Molecular Modeling of Zeolite Structure. 2. Structure and Dynamics of Silica Sodalite and Silicate Force Field," J. Am. Chem. Soc., 113(13), 4792-4800 (1991). https://doi.org/10.1021/ja00013a012
  5. Smit, B., "Simulating the Adsorption Isotherms of Methane, Ethane, and Propand in the Zeolite Silicalite," J. Phys. Chem., 99(15), 5597-5603 (1995). https://doi.org/10.1021/j100015a050
  6. Garcia-Sanchez, A., Dubbeldam, D., and Calero, S., "Modeling Adsorption and Self-Diffusion of Methane in LTA Zeolites: The Influence of Framework Flexibility," J. Phys. Chem. C, 114(35), 15068-15074 (2010). https://doi.org/10.1021/jp1059215
  7. Mofarahi, M. and Salehi, S. M., "Pure and Binary Adsorption Isotherms of Ethylene and Ethane on Zeolite 5A," Adsorption, 19, 101-110 (2013). https://doi.org/10.1007/s10450-012-9423-1
  8. Jiang, N., Erdos, M., Moultos, O. A., Shang R., Vlugt, T. J. H., Heijiman, S. G. J., and Rietveld, L. C., "The Adsorption Mechanisms of Organic Micropollutants on High-Silica Zeolites Causing S-Shaped Adsorption Isotherms: Experimental and Monte Carlo Simulation Study," Chem. Eng. J., 389, 123968 (2020). https://doi.org/10.1016/j.cej.2019.123968
  9. McEnaney, B., "Structure and Bonding in Carbon Materials," in Burchell, T. D., Ed., Carbon Materials for Advanced Technologies, Elsevier, Amsterdam, The Netherlands (1999).
  10. Barton, T. J., Bull, L. M., Klemperer, W. G., Loy, D. A., McEnaney, B., Misono, M, Monson, P. A., Pez, G., Scherer, G. W., Vartuli, J. C., and Yaghi, O. M., "Tailored Porous Materials," Chem. Mater., 11(10), 2633-2656 (1999). https://doi.org/10.1021/cm9805929
  11. Bandosz, T., Biggs, M. J., Gubbins, K. E., Hattori, Y., Iiyama, T., Kaneko, K., Pikunic, J., and Thoson, T., "Molecular Models of Porous Carbons," in Radovic, L. R., Ed., Chemistry and Physics of Carbon, Vol. 28, Marcel Dekker, New York, 41-228 (2003).
  12. Franklin, R. E., "Crystallite Growth in Graphitizing and Non-graphitizing Carbons," Proc. R. Soc. Lond. A, 209, 196-218 (1951). https://doi.org/10.1098/rspa.1951.0197
  13. Oberlin, A., Villey, M., and Combaz, A., "Influence of Elemental Composition on Carbonization: Pyrolysis of Kerosene Shale and Kuckersite," Carbon, 18(5), 347-353 (1980). https://doi.org/10.1016/0008-6223(80)90006-8
  14. Oberlin, A., "Carbonization and Graphitization," Adsorption, 22(6), 521-541 (1984).
  15. Kaneko, K., Cranknell, R. F., and Nicholson, D., "Nitrogen Adsorption in Slit Pores at Ambient Temperatures: Comparison of Simulation and Experiment," Langmuir, 10(12), 4606-4609 (1994). https://doi.org/10.1021/la00024a036
  16. Craknell, R. F. and Nicholson, D., "Adsorption of Gas Mixtures on Solid Surfaces, Theory and Computer Simulation," Adsorption, 1(1), 7-16 (1995). https://doi.org/10.1007/BF00704142
  17. Guesev, V. Y. and O'Brien, J. A., "Can Molecular Simulations Be Used to Predict Adsorption on Activated Carbons?," Langmuir, 13(10), 2822-2824 (1997). https://doi.org/10.1021/la960456n
  18. Guesev, V. Y. and O'Brien, J. A., "Prediction of Gas Mixture Adsorption on Activated Carbon Using Molecular Simulation," Langmuir, 14(21), 6328-6331 (1998). https://doi.org/10.1021/la980510v
  19. Kim, D. K., Kum, G. H., and Seo, Y. G., "Prediction of Adsorption Equilibria of Methane and Ethane onto Activated Carbon by Monte Carlo Method," Korean Chem. Eng. Res., 39(3), 307-313 (2001).
  20. Calleja, G., Coto, B., Pinar, A., and Morales-Cas, A. M., "Ethane Adsorption in Slit-Shaped Micropores: Influence of Molecule Orientation in Adsorption Capacity," Adsorption, 12(1), 45-54 (2001).
  21. Seaton, N. A., Friedman, S. P., MacElroy, J. M. D., and Murphy, B. J., "The Molecular Sieving Mechanism in Carbon Molecular Sieves: A Molecular Dynamics and Critical Path Analysis," Langmuir, 13(7), 1199-1204 (1997). https://doi.org/10.1021/la9510644
  22. Lucena, S. M. P., Paiva, C. A. S., Silvino, P. F. G., Azevedo, D. C. S., and Cavalcante Jr, C. L., "The Effect of Heterogeneity in the Randomly Etched Graphite Model for Carbon Pore Size Characterization," Carbon, 48(9), 2554-2565 (2010). https://doi.org/10.1016/j.carbon.2010.03.034
  23. Seo, Y. G., "Adsorption Calculation of Oxygen, Nitrogen and Argon in Carbon-Based Adsorbent with Randomly Etched Graphite Pores," Clean Technol., 24(4), 348-356 (2018).
  24. Thomson, K. T. and Gubbins, K. E., "Modeling Structural Morphology of Microporous Carbons by Reverse Monte Carlo," Langmuir, 16(13), 5761-5773 (2000). https://doi.org/10.1021/la991581c
  25. Biggs, M. J., Buts, A., and Williamson, D., "Molecular Simulation Evidence for Solilike Adsorbate in Complex Carbonaceous Micropore Structures," Langmuir, 20(14), 5786-5800 (2004). https://doi.org/10.1021/la036269o
  26. Emmerich, F. G., "Evolution with Heat Treatment of Crystallinity in Carbons," Carbon, 33(12), 1709-1715 (1995). https://doi.org/10.1016/0008-6223(95)00127-8
  27. Shim, H. S., Hurt, R. H., and Yang, N. Y. C., "A Methodology for Analysis of 002 Lattice Fringe Images and Its Application to Combustion-Derived Carbons," Carbon, 38(1), 29-45, (2000). https://doi.org/10.1016/S0008-6223(99)00096-2
  28. Oberlin, A., Bonnamy, S., and Rouxhet, P. G., "Colloidal and Supermolecular Aspects of Carbon," in Thrower, P. A. and Radovic, L. R., Ed., Chemistry and Physics of Carbon, Vol. 26, Marcel Dekker, New York, 1-148 (1999).
  29. Harris, P. J. F, Tsang, S. C., Claridge, J. B., and Green, M. L. H., "High-Resolution Electron Microscopy Studies of a Micropous Carbon produced by Arc-Evaporation," J. Chem. Soc. Fraday Trans., 90(18), 2799-2802 (1994). https://doi.org/10.1039/ft9949002799
  30. Allen, M. P., and Tildesley, D. J., Computer Simulation of Liquids, Clarendon Press, Oxford, UK (1986).
  31. Smith, W., and Finchan, D., "The Ewald Sum in Truncated Octahedral and Rhombic Dodecahedral Boundary Conditions," Mol. Simul., 10(1), 67-71 (1993). https://doi.org/10.1080/08927029308022499
  32. Fennell, C. J. and Gezelter, J. D., "Is the Ewald Summation Still Necessary? Pairwise Alternatives to the Accepted Standard for Long-Range Electrostatics," J. Chem. Phys., 124, 234104 (2006). https://doi.org/10.1063/1.2206581
  33. Heyes, D. M. and van Swol, F., "The Electrostatic Potential and Field in the Surface Region of Lamina and Semi-Infinite Point Carge Lattices," J. Chem. Phys., 75(10), 5051-5058 (1981). https://doi.org/10.1063/1.441896
  34. Wolf, D., Keblinski, P., Phillpot, S. R., and Eggebrecht, J., "Exact Method for the Simulation of Coulombic Systems by Spherically Truncated Pairwise r-1 Summation," J. Chem. Phys., 110(17), 8254- 8282 (1999). https://doi.org/10.1063/1.478738
  35. Jorge, M. and Seaton, N. A., "Long-Range Interactions in Monte Carlo Simulation of Confined Water," Mol. Phys., 100(13), 2017-2023 (2002). https://doi.org/10.1080/00268970110099585
  36. Gelb, L. D. and Gubbins, K. E., "Characterization of Porous Glasses: Simulation Models, Adsorption Isotherms, and the Brunauer-Emmett-Teller Analysis Method," Langmuir, 14(8), 2097-2111 (1998). https://doi.org/10.1021/la9710379
  37. Gelb, L. D. and Gubbins, K. E., "Pore Size Distributions in Porous Glasses: A Computer Simulation Study," Langmuir, 15(2), 305-308 (1999). https://doi.org/10.1021/la9808418
  38. Bhattacharya, S. and Gubbins, K. E., "Fast Method for Computing Pore Size Distributions of Model Materials," Langmuir, 22(18), 7726-7731 (2006). https://doi.org/10.1021/la052651k
  39. Connolly, M. L., "Computation of Molecular Volume," J. Am. Chem. Soc., 107(5), 1118-1124 (1985). https://doi.org/10.1021/ja00291a006
  40. Kappel, F. and Kuntsevich, A. V., "An Implementation of Shor's r-Algorithm," Comput. Optim. Appl., 15(2), 193-205 (2000). https://doi.org/10.1023/A:1008739111712
  41. https://imsc.uni-graz.at/kuntsevich/solvopt/ (accessed May 2022).
  42. https://tigg.com/resources/activated-carbon-knowledge-base/what-is-activated-carbon/ (accessed May 2022).
  43. Thomson, K. T. and Gubbins, K. E., "Modeling Structural Morphology of Microporous Carbons by Reverse Monte Carlo," Langmuir, 16(13), 5761-5773 (2000). https://doi.org/10.1021/la991581c
  44. Kim, D. K., Kum, G. H., and Seo, Y. G., "Prediction of Adsorption Equilibria of Methane and Ethane onto Activated Carbon by Monte Carlo Method," Korean Chem. Eng. Res., 39(3) 307-313 (2001).