• 제목/요약/키워드: Nanopore

검색결과 63건 처리시간 0.019초

나노포어 기반 나노바이어센서 기술 (Introduction to research and current trend about nanopore-based nanobiosensor)

  • 김주형;윤여안;이충만;유경화
    • 진공이야기
    • /
    • 제2권1호
    • /
    • pp.4-9
    • /
    • 2015
  • A nanopore is a very small hole that can be used as single-molecule detector. The detection principle is based on monitoring the ionic current reduced by passage of a molecule through the nanopore as a voltage is applied across the nanopore. Here, we introduce biological nanopores and solid-state nanopores. Then, research and current trend about nanopore-based DNA biosensor and protein analysis are reviewed.

알루미늄 단결정 집합조직이 AAO의 나노기공 구조에 미치는 영향 (Effect of Texture of Al Single Crystal on the Nanopore Structure of AAO)

  • 박병현;김인수
    • 소성∙가공
    • /
    • 제29권3호
    • /
    • pp.127-134
    • /
    • 2020
  • It is known that the difference of texture of the polycrystalline Al sheet is not a critical parameter for the formation of aligned nanopore arrays in anodic aluminum oxide (AAO). This will be related to the polycrystalline grain in the Al sheet. The texture of each grain in the polycrystalline Al sheet is different. The mixed textures of grains have the mixing effects on the nanopore structure of the AAO. Thus, the effect of Al texture on the nanopore structure of the AAO was investigated using three types of Al single crystals with (111), (200) and (220) textures in this paper. These three types of AAO layers were fabricated by the two-step anodizing method at 40 V and temperature of 0-5℃ in oxalic acid solution. In the nanopores formed on the AAO, the average area of one nanopore and the average roundness of one nanopore were measured were measured based on the SEM images. In the hexagon obtained by connecting nanopores on the AAO, the average standard deviation of one angle deviated from 120° was measured. In the AAO nanopores with texture of (111), (200) and (220) single crystal samples, the average area of one nanopore of (200) single crystal sample was the widest, followed by (111), (220) single crystals. The average circularity of one nanopore of (200) single crystal sample was the best, followed by (111), (220) single crystals. The average standard deviation of an angle from 120° of (220) single crystal sample was the largest, followed by (111) and (200) single crystals.

고체상 나노구멍을 이용한 DNA 염기서열 분석기술 (DNA Sequencing Analysis Technique by Using Solid-State Nanopore)

  • 김태헌;박정호
    • 센서학회지
    • /
    • 제21권5호
    • /
    • pp.359-366
    • /
    • 2012
  • Nanopore DNA sequencing is an emerging and promising technique that can potentially realize the goal of a low-cost and high-throughput method for analyzing human genome. Especially, solid-state nanopores have relatively high mechanical stability, simple surface modification, and facile fabrication process without the need for labeling or amplification of PCR (polymerized chain reaction) in DNA sequencing. For these advantages of solid-sate nanopores, the use of solid-state nanopores has been extensively considered for developing a next generation DNA sequencing technology. Solid-state nanopore sequencing technique can determine and count charged molecules such as single-stranded DNA, double-stranded DNA, or RNA when they are driven to pass through a membrane nanopore between two electrolytes of cis-trans chambers with applied bias voltage by measuring the ionic current which varies due to the existence of the charged particles in the nanopore. Recently, many researchers have suggested that nanopore-based sensors can be competitive with other third-generation DNA sequencing technologies, and may be able to rapidly and reliably sequence the human genome for under $1,000.

다양한 양극산화 공정조건에 따른 롤 금형 표면에 형성되는 나노포어 형상에 대한 연구 (Investigation of Nanopore Shape Formed on an Aluminum Roll Mold with Various Anodizing Conditions)

  • 류인곤;한의돈;김병희;서영호
    • 한국생산제조학회지
    • /
    • 제26권2호
    • /
    • pp.166-171
    • /
    • 2017
  • This study analyzes the effect of anodizing conditions on nanopore formation on a cylindrical aluminum roll. In general, a nanopore is formed at the center of a concave base-pattern. Occasionally, multiple nanopores are formed on a single base-pattern. However, to control the diameter and interpore distance precisely, single nanopores are required. In this study, the ratio of the number of single nanopores to the total number of nanopores was investigated by varying anodizing conditions such as electrode area, electrolyte concentration, and rotation speed of the roll mold. The areal ratio of the counter-electrode to the working electrode (aluminum), electrolyte concentration, and the roll-mold rotation speed were varied from 0.4% to 42%, 0.07 M to 0.3 M, and 5 rpm to 75 rpm, respectively. The experimental results showed that the single-nanopore ratio increased with increasing counter-electrode area and electrolyte concentration. However, the rotation speed had no significant effect on nanopore shape.

Hole Defects on Two-Dimensional Materials Formed by Electron Beam Irradiation: Toward Nanopore Devices

  • Park, Hyo Ju;Ryu, Gyeong Hee;Lee, Zonghoon
    • Applied Microscopy
    • /
    • 제45권3호
    • /
    • pp.107-114
    • /
    • 2015
  • Two-dimensional (2D) materials containing hole defects are a promising substitute for conventional nanopore membranes like silicon nitride. Hole defects on 2D materials, as atomically thin nanopores, have been used in nanopore devices, such as DNA sensor, gas sensor and purifier at lab-scale. For practical applications of 2D materials to nanopore devices, researches on characteristics of hole defects on graphene, hexagonal boron nitride and molybdenum disulfide have been conducted precisely using transmission electron microscope. Here, we summarized formation, features, structural preference and stability of hole defects on 2D materials with atomic-resolution transmission electron microscope images and theoretical calculations, emphasizing the future challenges in controlling the edge structures and stabilization of hole defects. Exploring the properties at the local structure of hole defects through in situ experiments is also the important issue for the fabrication of realistic 2D nanopore devices.

Structure and apoptotic function of p73

  • Yoon, Mi-Kyung;Ha, Ji-Hyang;Lee, Min-Sung;Chi, Seung-Wook
    • BMB Reports
    • /
    • 제48권2호
    • /
    • pp.81-90
    • /
    • 2015
  • p73 is a structural and functional homologue of the p53 tumor suppressor protein. Like p53, p73 induces apoptosis and cell cycle arrest and transactivates p53-responsive genes, conferring its tumor suppressive activity. In addition, p73 has unique roles in neuronal development and differentiation. The importance of p73-induced apoptosis lies in its capability to substitute the pro-apoptotic activity of p53 in various human cancer cells in which p53 is mutated or inactive. Despite the great importance of p73-induced apoptosis in cancer therapy, little is known about the molecular basis of p73-induced apoptosis. In this review, we discuss the p73 structures reported to date, detailed structural comparisons between p73 and p53, and current understanding of the transcription-dependent and -independent mechanisms of p73-induced apoptosis.

열처리가 알루미나 나노기공의 배열에 미치는 영향 (Effects of Heat Treatments of Aluminum Substrate on Nanopore Arrays in Anodic Alumina)

  • 조수행;오한준;김성수;주은균;유창우;지충수
    • 한국재료학회지
    • /
    • 제12권11호
    • /
    • pp.856-859
    • /
    • 2002
  • To investigate effects of heat treatments including grain size control in substrate aluminum on nanopore arrays in anodic alumina template, aluminum was heat treated at $500^{\circ}C$ for 1h. The heat treated aluminum was anodized by two successive anodization processes in oxalic solution and the nanopore arrays in anodic alumina layer were studied using TEM and FE-SEM. The highly ordered porous alumina templates with 110 nm interpore distance and 40 nm pore diameter have been observed and the pore array of the anodic alumina has a uniform and closely-packed honeycomb structure. In the case of alumina template obtained from heat treated aluminum substrate, the well- ordered nanopore region in anodic alumina increased and became more homogeneous compared with that from non-heattreated one.

Rapid Identification of Jasmine Virus H Infecting Ixora coccinea by Nanopore Metatranscriptomics

  • Sung-Woong Kim;Hyo-Jeong Lee;Sena Choi;In-Sook Cho;Rae-Dong Jeong
    • The Plant Pathology Journal
    • /
    • 제39권3호
    • /
    • pp.303-308
    • /
    • 2023
  • The global climate change and international trade have facilitated the movement of plants across borders, increasing the risk of introducing novel plant viruses in new territories. Ixora coccinea exhibited virus-like foliar symptoms, including mosaic and mild mottle. An Oxford Nanopore Technologies-based compact and portable MinION platform was used to identify the causal viral pathogen. The complete genome sequence of jasmine virus H (JaVH; 3867 nt, JaVH-CNU) was determined and found to share 88.4-90.3% nucleotide identity with that of Jasminum sambac JaVH isolate in China. Phylogenetic analysis based on the complete amino acid sequences of RNA-dependent RNA polymerase and coat protein revealed that JaVH-CNU was grouped separately with other JaVH isolates. This is the first report of a natural JaVH infection of I. coccinea. The application of rapid nanopore sequencing for plant virus identification was demonstrated and is expected to provide accurate and rapid diagnosis for virus surveillance.

Slippage on which interface in nanopore filtration?

  • Xiaoxu Huang;Wei Li;Yongbin Zhang
    • Membrane and Water Treatment
    • /
    • 제15권1호
    • /
    • pp.31-39
    • /
    • 2024
  • The flow in a nanopore of filtration membrane is often multiscale and consists of both the adsorbed layer flow and the intermediate continuum fluid flow. There is a controversy on which interface the slippage should occur in the nanopore filtration: On the adsorbed layer-pore wall interface or on the adsorbed layer-continuum fluid interface? What is the difference between these two slippage effects? We address these subjects in the present study by using the multiscale flow equations incorporating the slippage on different interfaces. Based on the limiting shear strength model for the slippage, it was found from the calculation results that for the hydrophobic pore wall the slippage surely occurs on the adsorbed layer-pore wall interface, however for the hydrophilic pore wall, the slippage can occur on either of the two interfaces, dependent on the competition between the interfacial shear strength on the adsorbed layer-pore wall interface and that on the adsorbed layer-continuum fluid interface. Since the slippage on the adsorbed layer-pore wall interface can be designed while that on the adsorbed layer-continuum fluid interface can not, the former slippage can result in the flux through the nanopore much higher than the latter slippage by designing a highly hydrophobic pore wall surface. The obtained results are of significant interest to the design and application of the interfacial slippage in nanoporous filtration membranes for both improving the flux and conserving the energy cost.

Random topological defects in double-walled carbon nanotubes: On characterization and programmable defect-engineering of spatio-mechanical properties

  • A. Roy;K. K. Gupta;S. Dey;T. Mukhopadhyay
    • Advances in nano research
    • /
    • 제16권1호
    • /
    • pp.91-109
    • /
    • 2024
  • Carbon nanotubes are drawing wide attention of research communities and several industries due to their versatile capabilities covering mechanical and other multi-physical properties. However, owing to extreme operating conditions of the synthesis process of these nanostructures, they are often imposed with certain inevitable structural deformities such as single vacancy and nanopore defects. These random irregularities limit the intended functionalities of carbon nanotubes severely. In this article, we investigate the mechanical behaviour of double-wall carbon nanotubes (DWCNT) under the influence of arbitrarily distributed single vacancy and nanopore defects in the outer wall, inner wall, and both the walls. Large-scale molecular simulations reveal that the nanopore defects have more detrimental effects on the mechanical behaviour of DWCNTs, while the defects in the inner wall of DWCNTs make the nanostructures more vulnerable to withstand high longitudinal deformation. From a different perspective, to exploit the mechanics of damage for achieving defect-induced shape modulation and region-wise deformation control, we have further explored the localized longitudinal and transverse spatial effects of DWCNT by designing the defects for their regional distribution. The comprehensive numerical results of the present study would lead to the characterization of the critical mechanical properties of DWCNTs under the presence of inevitable intrinsic defects along with the aspect of defect-induced spatial modulation of shapes for prospective applications in a range of nanoelectromechanical systems and devices.