• Title/Summary/Keyword: Nanoparticle Surface Deposition

Search Result 48, Processing Time 0.027 seconds

Experimental Investigations on Pool Boiling CHE of Nano-Fluids (나노유체의 풀비등 임계열유속에 대한 실험적 연구)

  • Kim, Hyung-Dae;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.11
    • /
    • pp.949-956
    • /
    • 2007
  • Pool boiling critical heat flux (CHF) of nanofluids with oxide nanoparticles of $TiO_2$ or $Al_2O_3$ was experimentally investigated under atmospheric pressure. The results showed that a dispersion of oxide nanoparticles significantly enhances the CHF over that of pure water. Moreover it was found that nanoparticles were seriously deposited on the heater surface during pool boiling of nanofluids. CHF of pure water on a nanoparticle-deposited surface, which is produced during the boiling of nanofluids, was not less than that of nanofluids. The result reveals that the CHF enhancement of nanofluids is absolutely attributed to modification of the heater surface by the nanoparticle deposition. Then, the nanoparticle-deposited surface was characterized with parameters closely related to pool boiling CHF, such as surface roughness, contact angle, and capillary wicking. Finally, reason of the CHF enhancement of nanofluids is discussed based on the changes of the parameters.

Experimental study on the role of nanoparticle deposition in pool boiling CHF enhancement using nanofluids (나노유체 이용한 풀비등 임계열유속 증가에서 나노입자 유착물의 영향에 관한 실험적 연구)

  • Kim, Hyung-Dae;Kim, Seon-Tae;Ahn, Ho-Seon;Kim, Moo-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1906-1911
    • /
    • 2007
  • It has been well known that pool boiling CHF in nanofluids compared to pure water significantly increase due to the deposition of nanoparticles on heater surface. This study concerns the characteristics of the nanoparticle deposition layer and its influence on CHF. Pool boiling experiments were carried out with 0.01vol.% water-$TiO_2$ nanofluids to obtain various nanoparticle-deposited heaters. CHF on the prepared heaters was measured during pool boiling in pure water. The heater surfaces were visualized using scanning electron microscope (SEM) and also characterized using contact angle and capillarity. The results showed that the CHF enhancement in nanofluids was completely dependent upon the structural and physicochemical characteristics of the nanoparticle deposition layer.

  • PDF

Palladium Layers on an Au(111) Nanoparticle and Their Catalytic Activity to Formic Acid Oxidation

  • Kim, Byeong-Gwon;Seo, Dae-Ha;Song, Hyeon-Jun;Gwak, Ju-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.206-206
    • /
    • 2011
  • Nanoparticles have been received great attention from many researchers for several decades because of their good and unique properties. In particular, researches in the field of synthesis of bimetallic nanoparticles showed good results for the past ten years. In this research, Pd thinlayer on Au nanoparticles were synthesized by electrochemical deposition method. Well-defined Au(111) nanoparticles were synthesized by solution based reduction method. Electrochemical deposition conditions for Pd thinlayer on Au(111) nanoparticles surface were carefully regulated by controlling parameters of cyclic voltammetry. To calculate exact mass and surface area catalytic activities of deposited Pd thinlayer on Au(111) nanoparticle, electrochemically active surface area (ECSA) and mass of the deposited Pd thinlayer were measured by cyclic voltammetry in 0.1 M HClO4 solution. Afterward, catalytic activities of the deposited Pd thinlayer were measured in 0.1 M HClO4 + 0.2 M formic acid solution. In case of less negative deposition potential, the amounts of deposited Pd mass and surface area were small. However, mass and ECSA activity of the deposited Pd to oxidize formic acid were increased.

  • PDF

Experimental Investigation on the Pool Boiling Critical Heat Flux of Water-Based Alumina and Titania Nanofluids on a Flat Plate Heater (평판형 히터를 이용한 알루미늄과 타이타늄 산화물 나노유체의 풀비등 임계열유속에 관한 실험적 연구)

  • Ahn, Ho-Seon;Kim, Hyung-Dae;Jo, Hang-Jin;Kang, Soon-Ho;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.10
    • /
    • pp.729-736
    • /
    • 2009
  • Pool boiling heat transfer and critical heat flux (CHF) of water-based nanofluids with alumina and titania nanoparticles of 0.01% by volume were investigated on a disk heater at saturated and atmospheric conditions. The experimental results showed that the boiling in nanofluids caused the considerable increase in CHF on the flat surface heater. It was revealed by visualization of the heater surface subsequent to the boiling experiments that a major amount of nanoparticles deposited on the surface during the boiling process. Pool boiling of pure water on the surface modified by such nanoparticle deposition resulted in the same CHF increases as what boiling nanofluids, thus suggesting the CHF enhancement in nanofluids was an effect of the surface modification through the nanoparticle deposition during nanofluid boiling. Possible reasons for CHF enhancement in pool boiling of nanofluids are discussed with surface property changes caused by the nanoparticle deposition.

THE EFFECT OF MICRO/NANOSCALE STRUCTURES ON CHF ENHANCEMENT

  • Ahn, Ho-Seon;Kim, Moo-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.43 no.3
    • /
    • pp.205-216
    • /
    • 2011
  • Recently, many research studies have investigated the enormous critical heat flux (CHF) enhancement caused by nanofluids during pool boiling and flow boiling. One of the main reasons for this enhancement is nanoparticle deposition on the heated surface. However, in real applications, nanofluids create many problems when used as working fluids because of sedimentation and aggregation. Therefore, artificial surfaces on silicon and metal have been developed to create an effect similar to that of nanoparticle deposition. These modified surfaces have proved capable of greatly increasing the CHF during pool boiling, and good results have also been observed during flow boiling. In this study, we demonstrate that the wetting ability of a surface, i.e., wettability, and the liquid spreading ability (hydrophilic surface property), are key parameters for increasing the CHF during both pool and flow boiling. We also demonstrate that when the fuel surface in nuclear power plants is modified in a similar manner, it has the same effect, producing a large CHF enhancement.

Experimental Investigation of CHF Enhancement on the Modified Surface Under Pool Boiling (개질된 표면을 이용한 풀비등 임계열유속 증진에 관련한 실험적 연구)

  • Kang, Soon-Ho;Ahn, Ho-Seon;Jo, Hang-Jin;Kim, Moo-Hwan;Kim, Hyung-Mo;Kim, Joon-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.11
    • /
    • pp.840-848
    • /
    • 2009
  • In the boiling heat transfer mechanism, CHF(critical heat flux) is the significantly important parameter of the system. So, many researchers have been struggling to enhance the CHF of the system in enormous methods. Recently, there were lots of researches about enormous CHF enhancement with the nanofluids. In that, the pool boiling CHF in nanofluids has the significantly increased value compared to that in pure water because of the deposition of the nanoparticle on the heater surface in the nanofluids. The aim of this study is the comparison of the effect of the nanoparticle deposited surface and the modified surface which has the similar morphology and made by MEMS fabrication. The nanoparticle deposited surface has the complex structures in nano-micro scale. Therefore, we fabricated the surfaces which has the similar wettability and coated with the micro size post and nano structure. The experiment is performed in 3 cases : the bare surface with 0.002% water-ZnO nanofluids, the nanoparticle deposited surface with pure water and the new fabricated surface with pure water. The contact angle, a representative parameter of the wettability, of the all 3 cases has the similar value about 0 and the SEM(scanning electron microscope) images of the surfaces show the complex nano-micro structure. From the pool boiling experiment of the each case, the nanoparticle deposited surface with pure water and the fabricated surface with pure water has the almost same CHF value. In other words, the CHF enhancement of the nanoparticle deposited surface is the surface effect. It also shows that the new fabricated surface follows the nanoparticle deposited surface well.

A Study on the Silver Nanoparticle Deposition for Optical Amplification (광 증폭용 플라즈모닉 나노구조 제작을 위한 은 나노입자 증착 연구)

  • Kang, J.S.;Kim, J.H.;Jeong, M.Y.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.1
    • /
    • pp.11-15
    • /
    • 2018
  • In this study, we deposited silver nanoparticles on the nanocone array structure which was fabricated by the UV nanoimprint process for optical signal amplification. The deposition of the silver nanoparticles was based on the evaporation behavior of the solution droplet according to wettability of surface and the deposition pattern changed from the center of the droplet to the edge depending on the difference of thermal energy. The optical property of silver nanoparticles that were deposited on imprinted nanohole patterns was simulated by the Finite difference time domain (FDTD) analysis method, and it was confirmed that energy was concentrated around the silver nanoparticle of the finally fabricated structure.

Support Effect of Arc Plasma Deposited Pt Nanoparticles/TiO2 Substrate on Catalytic Activity of CO Oxidation

  • Qadir, Kamran;Kim, Sang Hoon;Kim, Sun Mi;Ha, Heonphil;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.261-261
    • /
    • 2013
  • The smart design of nanocatalysts can improve the catalytic activity of transition metals on reducible oxide supports, such as titania, via strong metal-support interactions. In this work, we investigatedtwo-dimensional Pt nanoparticle/titania catalytic systems under the CO oxidation reaction. Arc plasma deposition (APD) and metal impregnation techniques were employed to achieve Pt nanoparticle deposition on titania supports, which were prepared by multitarget sputtering and sol-gel techniques. APD Pt nanoparticles with an average size of 2.7 nm were deposited on sputtered and sol-gel-prepared titania films to assess the role of the titania support on the catalytic activity of Pt under CO oxidation. In order to study the nature of the dispersed metallic phase and its effect on the activity of the catalytic CO oxidation reaction, Pt nanoparticles were deposited in varying surface coverages on sputtered titania films using arc plasma deposition. Our results show an enhanced activity of Pt nanoparticles when the nanoparticle/titania interfaces are exposed. APD Pt shows superior catalytic activity under CO oxidation, as compared to impregnated Pt nanoparticles, due to the catalytically active nature of the mild surface oxidation and the active Pt metal, suggesting that APD can be used for large-scale synthesis of active metal nanocatalysts.

  • PDF

Development of Metal Filter with Nanoporous Structure by Adhesion of Metal Nanoparticles Sintered onto a Micor-Filter (마이크로-필터 상에 소결 처리된 금속 나노입자 고착에 의한 나노기공체 금속 필터 개발)

  • Lee, Dong Geun;Park, Seok Joo;Park, Young Ok;Ryu, Jeong In
    • Korean Chemical Engineering Research
    • /
    • v.46 no.2
    • /
    • pp.397-401
    • /
    • 2008
  • The nanoparticle-agglomerates are synthesized by laser ablation, which have the morphology of dendrite structure. The filtration performance of a conventional micron-fibrous metal filter was improved by adhering nanoparticle-agglomerates onto the filter surface. The Sintered-Nanoparticle-Agglomerates-adhered Filter (SNAF) adhered with nanostructured material was made by heat treatment after deposition of nanoparticle-agglomerates sintered in aerosol phase onto the micron-fibrous metal filter. As the sintering temperature increases, the pressure drop of the filter increases a little but the filtration efficiency increases remarkably. This is due to increase of surface area of nanoparticle-agglomerates adhered onto the micron-fibrous metal filter.

Identifying and quantitating defects on chemical vapor deposition grown graphene layers by selected electrochemical deposition of Au nanoparticles

  • So, Hye-Mi;Mun, Jeong-Hun;Bang, Gyeong-Sook;Kim, Taek-Yong;Cho, Byung-Jin;Ahn, Chi-Won
    • Carbon letters
    • /
    • v.13 no.1
    • /
    • pp.56-59
    • /
    • 2012
  • The defect sites on chemical vapor deposition grown graphene are investigated through the selective electrochemical deposition (SED) of Au nanoparticles. For SED of Au nanoparticles, an engineered potential pulse is applied to the working electrode versus the reference electrode, thereby highlighting the defect sites, which are more reactive relative to the pristine surface. Most defect sites decorated by Au nanoparticles are situated along the Cu grain boundaries, implying that the origin of the defects lies in the synthesis of uneven graphene layers on the rough Cu surface.