References
- Choi, S.U.S., 1995 Enhancing thermal conductivity of fluids with nanoparticles, developments and applications of non-Newtonian flows, FED-Vol. 231/MD-Vol. 66.
- You, S.M., Kim, J.H., and Kim, K.H., 2003, Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer, Appl. Phys. Lett. 83, pp. 3374-3376. https://doi.org/10.1063/1.1619206
- Kim, H.D., Kim, J. and Kim, M.H., 2006, Effect of nanoparticles on CHF in pool boiling of nano-fluids, Int. J. of Heat and Mass Transfer, 49, pp. 5070-5074. https://doi.org/10.1016/j.ijheatmasstransfer.2006.07.019
- Golobic, I. and Ferjancic, K., 2000, The role of enhanced coated surface in pool boiling CHF in FC-72, Heat and Mass Transfer, 36, pp. 525-531. https://doi.org/10.1007/s002310000118
- Kim, H.D. and Kim, M.H., 2007, Experimental studies on CHF characteristics of nano-fluids at pool boiling, Int. J. Multiphase Flow, 33, pp. 691-706. https://doi.org/10.1016/j.ijmultiphaseflow.2007.02.007
- Liu, Z. and Liao, L., 2008, Sorption and agglutination phenomenon of nanofluids on a plane heating surface during pool boiling, Int. J. Heat Mass Transfer, 51, pp. 2593-2601. https://doi.org/10.1016/j.ijheatmasstransfer.2006.11.050
- Coursey, J.S. and Kim, J., 2008, Nanofluid boiling: The effect of surface wettability, Int. J. Heat Fluid Flow, 29, pp. 1577-1585. https://doi.org/10.1016/j.ijheatfluidflow.2008.07.004
- Kim, H.D. and Kim, M.H., 2007, Effect of nanoparticle deposition on capillary wicking that influences the critical heat flux in nanofluids, Appl. Phys. Lett., 91, pp. 014104. https://doi.org/10.1063/1.2754644
- Takamasa, T., Hazuku, T., Okamoto, K., Mishima, K., and Furuya, M., 2005, Radiation induced surface activation on Leidenfrost and quenching phenomena, Experimental Thermal and Fluid Science, 29, pp. 267-274. https://doi.org/10.1016/j.expthermflusci.2004.05.014
- Dhir, V. K., 1998, Boiling heat transfer, Annual Review of Fluid Mechanics, 30, pp. 365-401. https://doi.org/10.1146/annurev.fluid.30.1.365
- Kim, S.T., Kim, H.D., Kim, H., Ahn, H.S., Jo, H.J., Kim, J., and Kim, M.H., 2010, Effects of nano-fluid and surfaces with nano structure on the increase of CHF, Experimental Thermal and Fluid Science, 34, pp. 487-495. https://doi.org/10.1016/j.expthermflusci.2009.05.006
- Ahn, H.S., Lee, C., Kim, H., Jo, H.J., Kang, S.H., Kim, J., and Kim, M.H., 2010, Pool boiling CHF enhancement by micro/nanoscale modification of Zircaloy-4 surface, Nuclear Engineering and Design, 240, pp. 3350-3360. https://doi.org/10.1016/j.nucengdes.2010.07.006
- Jeong Y.H., Sarwar M.S., and Chang S.H., 2007, Flow boiling CHF enhancement with surfactant solutions under atmospheric pressure, 51, pp. 1916-1919.
- Ahn, H.S., Kim, H., Jo, H.J., Kang, S.H., Chang, W.P., and Kim, M.H., 2010, Experimental study of critical heat flux enhancement during forced convective flow boiling of nanofluid on a short heated surface, Int. J Multiphase Flow, 36, pp. 375-384. https://doi.org/10.1016/j.ijmultiphaseflow.2010.01.004
- Ahn H.S., Kang S.H., Jo H.J., Kim H, and Kim M.H., 2010, Visualization study of the effects of nanoparticles surface deposition on convective flow boiling CHF from a short heated wall, Int. J. Multiphase Flow, in press.
- Kim H., Ahn H. S., and Kim M. H., On the mechanism of pool boiling critical heat flux enhancement in nanofluids, J. Heat Transfer 132, pp. 061501.
- Kandlikar, S.G., 2001, A theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation, J. Heat Transfer 123, pp. 1071-1079. https://doi.org/10.1115/1.1409265
- Soriaga and Manuel, P., Electrochemical Surface Science, 1988, American Chemical Society, pp. 1.
- Ono, S., Saito, M., and Asoh, H., 2005, Self-ordering of anodic porous alumina formed in organic acid electrolytes, Electrochemica Acta, 51, pp. 827-833. https://doi.org/10.1016/j.electacta.2005.05.058
- Gong, D, Grimes, G.A., and Varghese, O.K., 2001, Titanium oxide nanotube arrays prepared by anodic oxidation, Journal of Material Research, 16, pp. 3331-3334. https://doi.org/10.1557/JMR.2001.0457
- Ploc, R.A. and Miller, M.A., 1977, Transmission and scanning electron microscopy of oxides anodically formed on zircaloy-2, Journal of Nuclear Materials, 64, pp. 71-85. https://doi.org/10.1016/0022-3115(77)90010-1
- Lee, W.J. and Smyrl, W.H., 2008, Oxide nanotube arrays fabricated by anodizing processes for advanced material application, Current Applied Physics, 8, pp. 818-821. https://doi.org/10.1016/j.cap.2007.04.036
- Salot, R., Lefebvre-Joud, F., and Baroux, B., 1996, Electrochemical behavior of thin anodic oxide films on zircaloy-4: role of the mobile defects, Journal of Electrochemistry Society, 143, pp. 3902-3909. https://doi.org/10.1149/1.1837314
- Chen, Y., Melvin, L.S., Weislogel, M.M., Jenson, R.M., Dhuey, S., and Nealey, P.F., 2008, Design, fabrication, and testing of micro porous wicking structure, Microelectronic Engineering, 85, pp. 1027-1030. https://doi.org/10.1016/j.mee.2008.01.078
- Ishino, C., Reyssat, M., Reyssat, E., Okumura K., and Quere D., 2007, Wicking within forests of micropillars, Europhysics Letters, 79, pp. 56005. https://doi.org/10.1209/0295-5075/79/56005
- Ahn, H.S, Jo, H.J., Kang, S.H., and Kim, M.H., 2011, Effect of liquid spreading due to nano/microstructures on the critical heat flux during pool boiling, Applied Physics Letters, 98, pp. 071908. https://doi.org/10.1063/1.3555430
Cited by
- nanofluid in a vertical and horizontal tube vol.227, pp.8, 2013, https://doi.org/10.1177/0954406212466765
- Fundamental Issues, Technology Development, and Challenges of Boiling Heat Transfer, Critical Heat Flux, and Two-Phase Flow Phenomena with Nanofluids pp.1521-0537, 2019, https://doi.org/10.1080/01457632.2018.1470285