Browse > Article
http://dx.doi.org/10.5714/CL.2012.13.1.056

Identifying and quantitating defects on chemical vapor deposition grown graphene layers by selected electrochemical deposition of Au nanoparticles  

So, Hye-Mi (National Nanofab Center)
Mun, Jeong-Hun (Department of Electrical Engineering, Korea Advanced Institute of Science and Technology)
Bang, Gyeong-Sook (National Nanofab Center)
Kim, Taek-Yong (Department of Electrical Engineering, Korea Advanced Institute of Science and Technology)
Cho, Byung-Jin (Department of Electrical Engineering, Korea Advanced Institute of Science and Technology)
Ahn, Chi-Won (National Nanofab Center)
Publication Information
Carbon letters / v.13, no.1, 2012 , pp. 56-59 More about this Journal
Abstract
The defect sites on chemical vapor deposition grown graphene are investigated through the selective electrochemical deposition (SED) of Au nanoparticles. For SED of Au nanoparticles, an engineered potential pulse is applied to the working electrode versus the reference electrode, thereby highlighting the defect sites, which are more reactive relative to the pristine surface. Most defect sites decorated by Au nanoparticles are situated along the Cu grain boundaries, implying that the origin of the defects lies in the synthesis of uneven graphene layers on the rough Cu surface.
Keywords
graphene; Au nanoparticle; defect decoration;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Mubeen S, Zhang T, Chartuprayoon N, Rheem Y, Mulchandani A, Myung NV, Deshusses MA. Sensitive detection of H2S using gold nanoparticle decorated single-walled carbon nanotubes. Anal Chem, 82, 250 (2010). http://dx.doi.org/10.1021/ac901871d.   DOI   ScienceOn
2 Kim YT, Han JH, Hong BH, Kwon YU. Electrochemical Synthesis of CdSe quantum-Dot arrays on a graphene basal plane using mesoporous silica thin-film templates. Adv Mater, 22, 515 (2010). http://dx.doi.org/10.1002/adma.200902736.   DOI   ScienceOn
3 Li X, Zhang G, Bai X, Sun X, Wang X, Wang E, Dai H. Highly conducting graphene sheets and Langmuir-Blodgett films. Nature Nanotechnol, 3, 538 (2008). http://dx.doi.org/10.1038/nnano.2008.210.   DOI   ScienceOn
4 Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotechnol, 3, 270 (2008). http://dx.doi.org/10.1038/nnano.2008.83.   DOI   ScienceOn
5 Li D, Muller MB, Gilje S, Kaner RB, Wallace GG. Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnol, 3, 101 (2008). http://dx.doi.org/10.1038/nnano.2007.451.   DOI   ScienceOn
6 Walter EC, Zach MP, Favier F, Murray BJ, Inazu K, Hemminger JC, Penner RM. Metal nanowire arrays by electrodeposition. Chem Phys Chem, 4, 131 (2003). http://dx.doi.org/10.1002/cphc.200390022.   DOI   ScienceOn
7 Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Balakrishnan J, Lei T, Ri Kim H, Song YI, Kim YJ, Kim KS, Ozyilmaz B, Ahn JH, Hong BH, Iijima S. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnol, 5, 574 (2010). http://dx.doi.org/10.1038/nnano.2010.132.   DOI
8 Zach MP, Ng KH, Penner RM. Molybdenum nanowires by electrodeposition. Science, 290, 2120 (2000). http://dx.doi.org/10.1126/science.290.5499.2120.   DOI   ScienceOn
9 Penner RM. Mesoscopic metal particles and wires by electrodeposition. J Phys Chem B, 106, 3339 (2002). http://dx.doi.org/10.1021/jp013219o.   DOI   ScienceOn
10 Banks CE, Davies TJ, Wildgoose GG, Compton RG. Electrocatalysis at graphite and carbon nanotube modified electrodes: edgeplane sites and tube ends are the reactive sites. Chem Commun, 7, 829 (2005). http://dx.doi.org/10.1039/b413177k.   DOI   ScienceOn
11 Fan Y, Goldsmith BR, Collins PG. Identifying and counting point defects in carbon nanotubes. Nature Mater, 4, 906 (2005). http://dx.doi.org/10.1038/nmat1516.   DOI   ScienceOn
12 Emtsev KV, Bostwick A, Horn K, Jobst J, Kellogg GL, Ley L, McChesney JL, Ohta T, Reshanov SA, Rohrl J, Rotenberg E, Schmid AK, Waldmann D, Weber HB, Seyller T. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Mater, 8, 203 (2009). http://dx.doi.org/10.1038/nmat2382.   DOI   ScienceOn
13 Obraztsov AN, Obraztsova EA, Tyurnina AV, Zolotukhin AA. Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon, 45, 2017 (2007). http://dx.doi.org/10.1016/j.carbon.2007.05.028.   DOI   ScienceOn
14 Kang BJ, Mun JH, Hwang CY, Cho BJ. Monolayer graphene growth on sputtered thin film platinum. J Appl Phys, 106, 104309 (2009). http://dx.doi.org/10.1063/1.3254193.   DOI   ScienceOn
15 Yu Q, Lian J, Siriponglert S, Li H, Chen YP, Pei SS. Graphene segregated on Ni surfaces and transferred to insulators. Appl Phys Lett, 93, 113103 (2008). http://dx.doi.org/10.1063/1.2982585.   DOI   ScienceOn
16 Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Jing K. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett, 9, 30 (2009). http://dx.doi.org/10.1021/nl801827v.   DOI   ScienceOn
17 Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Ahn JH, Kim P, Choi JY, Hong BH. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457, 706 (2009). http://dx.doi.org/10.1038/nature07719.   DOI   ScienceOn
18 Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 324, 1312 (2009). http://dx.doi.org/10.1126/science.1171245.   DOI   ScienceOn
19 Li X, Wang X, Zhang L, Lee S, Dai H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science, 319, 1229 (2008). http://dx.doi.org/10.1126/science.1150878.   DOI   ScienceOn
20 Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, De Heer WA. Electronic confinement and coherence in patterned epitaxial graphene. Science, 312, 1191 (2006). http://dx.doi.org/10.1126/science.1125925.   DOI   ScienceOn
21 Virojanadara C, Syväjarvi M, Yakimova R, Johansson LI, Zakharov AA, Balasubramanian T. Homogeneous large-area graphene layer growth on 6H-SiC(0001). Phys Rev B, 78, 245403 (2008). http://dx.doi.org/10.1103/PhysRevB.78.245403.   DOI   ScienceOn