DOI QR코드

DOI QR Code

A Study on the Silver Nanoparticle Deposition for Optical Amplification

광 증폭용 플라즈모닉 나노구조 제작을 위한 은 나노입자 증착 연구

  • Kang, J.S. (Department of Cogno-Mechatronics Engineering, Pusan National University) ;
  • Kim, J.H. (Department of Cogno-Mechatronics Engineering, Pusan National University) ;
  • Jeong, M.Y. (Department of Cogno-Mechatronics Engineering, Pusan National University)
  • 강지숙 (부산대학교 인지메카트로닉스공학과) ;
  • 김준현 (부산대학교 인지메카트로닉스공학과) ;
  • 정명영 (부산대학교 인지메카트로닉스공학과)
  • Received : 2017.12.12
  • Accepted : 2018.03.20
  • Published : 2018.03.31

Abstract

In this study, we deposited silver nanoparticles on the nanocone array structure which was fabricated by the UV nanoimprint process for optical signal amplification. The deposition of the silver nanoparticles was based on the evaporation behavior of the solution droplet according to wettability of surface and the deposition pattern changed from the center of the droplet to the edge depending on the difference of thermal energy. The optical property of silver nanoparticles that were deposited on imprinted nanohole patterns was simulated by the Finite difference time domain (FDTD) analysis method, and it was confirmed that energy was concentrated around the silver nanoparticle of the finally fabricated structure.

본 논문에서는 UV 나노임프린트 공정으로 제작한 나노 콘 형태의 구조물 위에 은 나노 입자를 증착하여 광증폭용 구조 형태를 제작하고자 하였다. 은 나노 입자의 증착은 하부 기판 표면의 젖음 특성에 따른 액적의 증발 거동을 이용하였으며, 기판 하부 열에너지의 차이에 따라서 액적 중심부부터 가장자리까지 증착 형태가 변화함을 확인하였다. 제작한 구조 형태와 유사한 구조를 시간영역 유한차분(FDTD)법을 통해 광 특성을 예측하여, 최종적으로 제작한 구조의 은나노 입자 부근에 에너지가 집중되는 결과를 확인하였다.

Keywords

References

  1. T. T. K. Nguyen, Q. M. Ngo, and T. K. Nguyen, "Design, Modeling, and Numerical Characteristics of the Plasmonic Dipole Nano-Antennas for Maximum Field Enhancement", Appl. Comput. Electromagn. Soc. J., 32(7), 634(2017).
  2. R. Piccoli, A. Rovere, A. Toma, R. Morandotti, and L. Razzari, "Terahertz Nanoantennas for Enhanced Spectroscopy in Terahertz Spectroscopy-A Cutting Edge Technology", InTech (2017).
  3. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, "Planar photonics with metasurfaces", Science, 339(6125), 1232009(2013). https://doi.org/10.1126/science.1232009
  4. D. Xu, F. Teng, Z. Wang, and N. Lu, "Droplet-confined Electroless Deposition of Silver Nanoparticles on Ordered Superhydrophobic Structures for High Uniform SERS Measurements", ACS Appl. Mater. Interfaces, 9(25), 21548(2017). https://doi.org/10.1021/acsami.7b04240
  5. J. Coppe, Z. Xu, Y. Chen, and G. L. Liu, "Metallic nanocone array photonic substrate for high-uniformity surface deposition and optical detection of small molecules", Nanotechnology, 22(24), 245710(2011). https://doi.org/10.1088/0957-4484/22/24/245710
  6. C. Hsu, T. Su, C. Wu, L. Kuo, and P. Chen, "Influence of surface temperature and wettability on droplet evaporation", Appl. Phys. Lett., 106(14), 141602(2015). https://doi.org/10.1063/1.4917291
  7. S. Ghosh, "Three-dimensional microplate formation with evaporating nanoparticle suspensions on superhydrophobic surfaces", Colloids Surf. Physicochem. Eng. Aspects, 529, 901(2017). https://doi.org/10.1016/j.colsurfa.2017.07.007
  8. P. Brunet, "Particle deposition after droplet evaporation on ultra-hydrophobic micro-textured surfaces", Soft Matter, 8, 11294(2012). https://doi.org/10.1039/c2sm26161h
  9. N. E. Yeo, Y. B. Shim, S. U. Cho, D.-I. Kim, K. S. Jang, K. N. Kim and M. Y. Jeong, Effects of Demolding Temperature on Formability and Optical Properties of Anti-reflective Nanostructure", J. Microelectron. Packag. Soc., 23(2), 91 (2016). https://doi.org/10.6117/kmeps.2016.23.2.091
  10. W. K. Cho, S. U. Cho, D. I. Kim, D. U. Kim and M. Y. Jeong, "Effects of Static Contact Angle and Roughness on Rolling Resistance of Droplet", J. Microelectron. Packag. Soc., 23(1), 23 (2016). https://doi.org/10.6117/kmeps.2016.23.1.023
  11. S. Kim, U. T. Jung, S. Kim, J. Lee, H. S. Choi, C. Kim, and M. Y. Jeong, "Nanostructured multifunctional surface with antireflective and antimicrobial characteristics", ACS Appl. Mater. Interfaces, 7(1), 326(2015). https://doi.org/10.1021/am506254r
  12. X. Zhong, A. Crivoi, and F. Duan, "Sessile nanofluid droplet drying", Adv. Colloid Interface Sci., 217, 13(2015). https://doi.org/10.1016/j.cis.2014.12.003
  13. R. Chen, L. Zhang, D. Zang, and W. Shen, "Wetting and Drying of Colloidal Droplets: Physics and Pattern Formation in Advances in Colloid Science", InTech (2016).
  14. D. Murakami, H. Jinnai, and A. Takahara, "Wetting transition from the Cassie-Baxter state to the Wenzel state on textured polymer surfaces", Langmuir, 30(8), 2061(2014). https://doi.org/10.1021/la4049067
  15. N. D. Patil, P. G. Bange, R. Bhardwaj, and A. Sharma, "Effects of Substrate Heating and Wettability on Evaporation Dynamics and Deposition Patterns for a Sessile Water Droplet Containing Colloidal Particles", Langmuir, 32(45), 11958(2016). https://doi.org/10.1021/acs.langmuir.6b02769