• Title/Summary/Keyword: Nanogenerators

Search Result 27, Processing Time 0.026 seconds

Piezoelectric Nanogenerators: Energy Harvesting Technology (압전 나노발전기: 에너지 수확 기술)

  • Shin, Dong-Myeong;Hwang, Yoon-Hwae
    • Vacuum Magazine
    • /
    • v.3 no.2
    • /
    • pp.17-20
    • /
    • 2016
  • Piezoelectric nanogenerators are energy harvesting device to convert a mechanical energy into an electric energy using nanostructured piezoelectric materials. This review summarizes works to date on piezoelectric nanogenerators, starting with a basic theory of piezoelectricity and working mechanism, and moving through the reports of numerous nanogenerators using nanorod arrays, flexible substrates and alternative materials. A sufficient power generated from nanogenerators suggests feasible applications for either power supplies or strain sensors of highly integratedl nano devices. Further development of nanogenerators holds promise for the development of self-powered implantable and wearable electronics.

Recent Trends in Energy Harvesting Technology Using Composite Materials (복합소재를 이용한 에너지 하베스팅 기술 동향)

  • Jung, Jae Hwan;Lee, Dong-Min;Kim, Young Jun;Kim, Sang-Woo
    • Ceramist
    • /
    • v.22 no.2
    • /
    • pp.110-121
    • /
    • 2019
  • Triboelectric nanogenerators and piezoelectric nanogenerators are a spotlighted energy harvesting method that converts the wasted mechanical energy from the environment into usable electrical energy. In the case of triboelectric nanogenerators, researches have been mainly focused on high permittivity and flexible polymer materials, and in the case of piezoelectric nanogenerators, researches have been focused on ceramic materials exhibiting high polarization characteristics. Recently, many researches have been conducted to improve durability and power in various environments by using composite materials which have flexible properties of polymer, high permittivity, thermal resistance and high polarization properties of ceramics. This article reviews the energy harvesting studies reported about composites materials using ceramics and polymers.

산화아연 압전 나노전력발전소자 기반 에너지 하베스팅

  • Kim, Sang-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.49-49
    • /
    • 2010
  • Nanopiezotronics is an emerging area of nanotechnology with a variety of applications that include piezoelectric field-effect transistors and diodes, self-powered nanogenerators and biosystems, and wireless nano/biosensors. By exploiting coupled piezoelectric and semiconducting characteristics, it is possible for nanowires, nanobelts, or nanorods to generate rectifying current and potential under external mechanical energies such as body movement (handling, winding, pushing, and bending) and muscle stretching, vibrations (acoustic and ultrasonic waves), and hydraulic forces (body fluid and blood flow). Fully transparent, flexible (TF) nanogenerators that are operated by external mechanical forces will be presented. By controlling the density of the seed layer for ZnO nanorod growth, transparent ZnO nanorod arrays were grown on ITO/PES films, and a TF conductive electrode was stacked on the ZnO nanorods. The resulting integrated TF nanodevice (having transparency exceeding 70 %) generated a noticeable current when it was pushed by application of an external load. The output current density was clearly dependent on the force applied. Furthermore, the output current density depended strongly on the morphology and the work function of the top electrode. ZnO nanorod-based nanogenerators with a PdAu, ITO, CNT, and graphene top electrodes gave output current densities of approximately $1-10\;uA/cm^2$ at a load of 0.9 kgf. Our results suggest that our TF nanogenerators are suitable for self-powered TF device applications such as flexible self-powered touch sensors, wearable artificial skins, fully rollable display mobile devices, and battery supplements for wearable cellular phones.

  • PDF

Self-powered Sensors based on Piezoelectric Nanogenerators

  • Rubab, Najaf;Kim, Sang-Woo
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.293-300
    • /
    • 2022
  • Flexible, wearable, and implantable electronic sensors have started to gain popularity in improving the quality of life of sick and healthy people, shifting the future paradigm with high sensitivity. However, conventional technologies with a limited lifespan occasionally limit their continued usage, resulting in a high cost. In addition, traditional battery technologies with a short lifespan frequently limit operation, resulting in a substantial challenge to their growth. Subsequently, utilizing human biomechanical energy is extensively preferred motion for biologically integrated, self-powered, functioning devices. Ideally suited for this purpose are piezoelectric energy harvesters. To convert mechanical energy into electrical energy, devices must be mechanically flexible and stretchable to implant or attach to the highly deformable tissues of the body. A systematic analysis of piezoelectric nanogenerators (PENGs) for personalized healthcare is provided in this article. This article briefly overviews PENGs as self-powered sensor devices for energy harvesting, sensing, physiological motion, and healthcare.

Investigation on Behaviors of Triboelectric Nanogenerators Based on Life Supplies according to Kinds of Chemical Bonding (화학 결합 종류에 따른 생활 용품 기반 마찰 발전기 거동 연구)

  • Hwang, Hee Jae;Choi, Dongwhi;Choi, Dukhyun
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.307-313
    • /
    • 2019
  • Triboelectric nanogenerators (TENGs), which are combined effects of triboelectricity and electric induction, is a large-area and low-cost technology that can be applied easily in our life. In this work, we applied life supplies to TENGs and analyzed a type of chemical bonding with the ratio of C-C/C-H/C-O/C=O bonding. As the ratio of C-C bonding increases, the materials can be positively charge. On the other hands, as the ratio of C-H bonding increases, the materials can be negatively charged materials. Based on these behaviors, we got a voltage of 210V, a current of 14.6 ㎂ and a maximum power of 9.8mW. Finally, we could turn on 97 light emitting diodes (LEDs) by using a wrap as a negative material and a magnetic note as a positive material.

Triboelectric Nanogenerators for Self-powered Sensors

  • Rubab, Najaf;Kim, Sang-Woo
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.79-84
    • /
    • 2022
  • Self-powered sensors play an important role in everyday life, and they cover a wide range of topics. These sensors are meant to measure the amount of relevant motion and transform the biomechanical activities into electrical signals using triboelectric nanogenerators (TENGs) since they are sensitive to external stimuli such as pressure, temperature, wetness, and motion. The present advancement of TENGs-based self-powered wearable, implantable, and patchable sensors for healthcare monitoring, human body motion, and medication delivery systems was carefully emphasized in this study. The use of TENG technology to generate electrical energy in real-time using self-powered sensors has been the topic of considerable research among various leading scholars. TENGs have been used in a variety of applications, including biomedical and healthcare physical sensors, wearable devices, biomedical, human-machine interface, chemical and environmental monitoring, smart traffic, smart cities, robotics, and fiber and fabric sensors, among others, as efficient mechanical-to-electric energy conversion technologies. In this evaluation, the progress accomplished by TENG in several areas is extensively reviewed. There will be a discussion on the future of self-powered sensors.

Novel Enhanced Flexibility of ZnO Nanowires Based Nanogenerators Using Transparent Flexible Top Electrode

  • Gang, Mul-Gyeol;Ha, In-Ho;Kim, Seong-Hyeon;Jo, Jin-U;Ju, Byeong-Gwon;Lee, Cheol-Seung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.490.1-490.1
    • /
    • 2014
  • The ZnO nanowire (NW)-based nanogenerators (NGs) can have rectifying current and potential generated by the coupled piezoelectric and semiconducting properties of ZnO by variety of external stimulation such as pushing, bending and stretching. So, ZnO NGs needed to enhance durability for stable properties of NGs. The durability of the metal electrodes used in the typical ZnO nanogenerators(NGs) is unstable for both electrical and mechanical stability. Indium tin oxide (ITO) is used as transparent flexible electrode but because of high cost and limited supply of indium, the fragility and lack of flexibility of ITO layers, alternatives are being sought. It is expected that carbon nanotube and Ag nanowire conductive coatings could be a prospective replacement. In this work, we demonstrated transparent flexible ZnO NGs by using CNT/Ag nanowire hybrid electrode, in which electrical and mechanical stability of top electrode has been improved. We grew vertical type ZnO NW by hydrothermal method and ZnO NW was coated with hybrid silicone coating solution as capping layer to enhance adhesion and durability of ZNW. We coated the CNT/Ag nanowire hybrid electrode by using bar coating system on a capping layer. Power generation of the ZnO NG is measured by using a picoammeter, a oscilloscope and confirmed surface condition with FE-SEM. As a results, the NGs using the CNT/Ag NW hybrid electrode show 75% transparency at wavelength 550 nm and small change of the resistance of the electrode after bending test. It will be discussed the effect of the improved flexibility of top electrode on power generation enhancement of ZnO NGs.

  • PDF

Application to Piezoelectric and Triboelectric Generators of Spongy Structured BaTiO3 Prepared by Sputtering (Sputtering에 의해 제조된 해면 구조 BaTiO3의 압전 및 마찰전기 발전기에의 응용)

  • Seon-A Kim;Sang-Shik Park
    • Korean Journal of Materials Research
    • /
    • v.34 no.1
    • /
    • pp.34-43
    • /
    • 2024
  • New piezoelectric and triboelectric materials for energy harvesting are being widely researched to reduce their processing cost and complexity and to improve their energy conversion efficiency. In this study, BaTiO3 films of various thickness were deposited on Ni foams by R.F. magnetron sputtering to study the piezoelectric and triboelectric properties of the porous spongy structure materials. Then piezoelectric nanogenerators (PENGs) were prepared with spongy structured BaTiO3 and PDMS composite. The output performance exhibited a positive dependence on the thickness of the BaTiO3 film, pushing load, and poling. The PENG output voltage and current were 4.4 V and 0.453 ㎂ at an applied stress of 120 N when poled with a 300 kV/cm electric field. The electrical properties of the fabricated PENG were stable even after 5,000 cycles of durability testing. The triboelectric nanogenerators (TENGs) were fabricated using spongy structured BaTiO3 and various polymer films as dielectrics and operated in a vertical contact separation mode. The maximum peak to peak voltage and current of the composite film-based triboelectric nanogenerator were 63.2 V and 6 ㎂, respectively. This study offers new insights into the design and fabrication of high output nanogenerators using spongy structured materials.

Effect on TENG Performance by Phase Control of TiOx Nanoparticles

  • Huynh, Nghia Dinh;Park, Hyun-Woo;Chung, Kwun-Bum;Choi, Dukhyun
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.365-370
    • /
    • 2018
  • One of the critical parameters to improve the output power for triboelectric nanogenerators (TENGs) is the surface charge density. In this work, we modify the tribo-material of TENG by introducing the $TiO_x$ embedded Polydimethylsiloxane (PDMS) in anatase and rutile phase. The effect of dielectric constant and electronic structure of the $TiO_x$ on the capacitance of TENG and the output power as well are discussed. The surface charge density is increased as the control of the dielectric constant in difference weight percent of $TiO_x$ and PDMS. As the results of that, the 5% $TiO_x$ rutile phase and 7% $TiO_x$ anatase phase embedded PDMS exhibit the highest TENG output. The peak value of voltage/current obtained from $TiO_x$ rutile and anatase phase are ${\sim}180V/8.2{\mu}A$ and $211.6V/8.7{\mu}A$, respectively, at the external force of 5 N and working frequency of 5 Hz, which gives over 12-fold and 15-fold power enhancement compared with the TENG based on the pristine PDMS film. This study provides a better understanding for TENG performance enhancement from the materials view.