• Title/Summary/Keyword: Nanocrystalline Silicon

Search Result 58, Processing Time 0.031 seconds

Electrical Characteristics of Si-O Superlattice Diode (Si-O 초격자 다이오드의 전기적 특성)

  • Park, Sung-Woo;Seo, Yong-Jin;Jeong, So-Young;Park, Chang-Jun;Kim, Ki-Wook;Kim, Sang-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.175-177
    • /
    • 2002
  • Electrical characteristics of the Si-O superlattice diode as a function of annealing conditions have been studied. The nanocrystalline silicon/adsorbed oxygen superlattice formed by molecular beam epitaxy (MBE) system. Consequently, the experimental results of superlattice diode with multilayer Si-O structure showed the stable and good insulating behavior with high breakdown voltage. This is very useful promise for Si-based optoelectronic and quantum device as well as for the replacement of silicon-on-insulator (SOI) in ultra high speed and lower power CMOS devices in the future, and it can be readily integrated with silicon ULSI processing.

  • PDF

Photoluminescence Characteristics of Si-O Superlattice Structure (Si-O 초격자 구조의 포토루미네슨스 특성)

  • Jeong, So-Young;Seo, Yong-Jin;Park, Sung-Woo;Lee, Kyoung-Jin;Kim, Chul-Bok;Kim, Sang-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.202-205
    • /
    • 2002
  • The photoluminescence (PL) characteristics of the silicon-oxygen(Si-O) superlattice formed by molecular beam epitaxy (MBE) were studied. To confirm the presence of the nanocrystalline Si structure, Raman scattering measurement was performed. The blue shift was observed in the PL peak of the oxygen-annealed sample, compared to the hydrogen-annealed sample, which is due to a contribution of smaller crystallites. Our results determine the right direction for the fabrication of silicon-based optoelectronic and quantum devices as well as for the replacement of silicon-on-insulator (SOI) in high-speed and low-power silicon MOSFET devices in the future.

  • PDF

Effect of hydrogen on the photoluminescence of Silicon nanocrystalline thin films (실리콘 나노결정 박막에서 수소 패시베이션 효과)

  • Jeon, Kyung-Ah;Kim, Jong-Hoon;Kim, Gun-Hee;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1033-1036
    • /
    • 2004
  • Si nanocrystallites thin films on p-type (100) Si substrate have been fabricated by pulsed laser deposition using a Nd:YAG laser. After deposition, samples were annealed at the temperatures of 400 to $800^{\circ}C$. Hydrogen passivation was then performed in the forming gas (95% $N_2$ + 5% $H_2$) for 1 hr. Strong violet-indigo photoluminescence has been observed at room temperature from nitrogen ambient-annealed Si nanocrystallites. The variation of photoluminescence (PL) Properties of Si nanocrystallites thin films has been investigated depending on annealing temperatures with hydrogen passivation. From the results of PL, Fourier transform infrared (FTIR), and high-resolution transmission electron microscopy (HRTEM) measurements, it is observed that the origin of violet-indigo PL from the nanocrystalline silicon in the silicon oxide film is related to the quantum size effect of Si nanocrystallites and oxygen vacancies in the SiOx(x : 1.6-1.8) matrix affects the emission intensity.

  • PDF

Detection of Nitroaromatic Compounds Based on Silicon Nanoparticles (실리콘 나노 입자를 이용한 니트로방향족 화합물의 탐지)

  • Song, Jinwoo
    • Journal of Integrative Natural Science
    • /
    • v.2 no.1
    • /
    • pp.37-40
    • /
    • 2009
  • Synthesis and characterization of alkyl-capped nanocrystalline silicon (R-n-Si) have been achieved from the reaction of silicontetrachloride with magnesiumsilicide. Surface of silicon nanocrystal has been derivatized with various alkyl groups (R=methyl, n-butyl, etc.). Silicon nanoparticles have been also obtained by the sonication of luminescent porous silicon. Former exhibits an emission band at 360 nm, but latter exhibits an emission band at 680 nm. In this study very sensitive detection of TNT (2,4,6-trinitrotoluene), DNT (2,4-dinitrotoluene), NB (nitrobenzene), and PA (picric acid) has been achieved in gas phase with porous silicon using photoluminescence quenching of the silicon crystallites as a transduction mode. Porous silicon are electrochemically etched from crystalline silicon wafers in an aqueous solution of hydrofluoric acid. We have characterized these silicon nanoparticles by Luminescence Spectrometer (LS 55).

  • PDF

Electron Emission Characteristic of Porous Poly-Silicon Emitter as a Oxidation process (산화공정에 따른 Porous Poly-Silicon Emitter의 방출특성 조사)

  • 제병길;배성찬;최시영
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.722-726
    • /
    • 2003
  • 본 논문에서는 Porous poly-silicon cold cathode에 의해 전자를 방출하는 Ballistic electron surface-emitting display(BSD)의 전계방출 특성을 실험했다. BSD는 nanocrystalline을 둘러싼 산화막을 multi-tunneling한 전자에 의해 발광이 되는 mechanism이기 때문에 산화막의 두께를 변수로 두어 특성을 실험했다. 900℃에서 1시간에서 3시간까지 30분 간격으로산화 반응을 진행하였으며, leakage current와 emission current의 비로 효율을 나타내었을 때 1시간 30분 동안 산화 반응을 한 시료가 가장 좋은 특성을 나타내었다.

  • PDF

Silicon Thin-film Transistors on Flexible Foil Substrates

  • Wagner, Sigurd;Gleskova, Helena
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.263-267
    • /
    • 2002
  • We are standing at the beginning of the industrialization of flexible thin-film transistor backplanes. An important group of candidates is based on silicon thin films made on metal or plastic foils. The main features of amorphous, nanocrystalline and microcrystalline silicon films for TFTs are summarized, and their compatibility with foil substrate materials is discussed.

  • PDF

Effect of drain bias stress on the stability of nanocrystalline silicon TFT (드레인 전압 바이어스에 대한 미세결정 실리콘 박막 트랜지스터의 전기적 안정성 분석)

  • Ji, Seon-Beom;Kim, Sun-Jae;Park, Hyun-Sang;Han, Min-Koo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1281_1282
    • /
    • 2009
  • ICP-CVD를 이용하여 inverted staggered 구조를 갖는 미세결정 실리콘 (Nanocrystalline Silicon, nc-Si) 박막 트랜지스터(Thin Film Transistor, TFT)를 제작하였다. 또한, 소자의 특성과 전기적 안정성을 평가하였다. 실험 결과는 짧은 채널 길이를 갖는 nc-Si TFT가 긴 채널 길이의 소자보다 같은 드레인 전압 바이어스 하에서 덜 열화 됨을 알 수 있었다. 이는 드레인 전압 바이어스 하에서의 낮은 채널 캐리어 농도는 적은 defect state를 만들기 때문으로 짧은 채널 길이의 TFT가 긴 채널 길이의 TFT보다 $V_{TH}$ 열화가 적었다. 이러한 결과는 짧은 채널 길이의 nc-Si TFT가 디스플레이 분야에 있어 다양하게 응용될 것으로 기대된다.

  • PDF

The Study of Nanocrystalline Silicon Bottom-gate Thin Film Transistor Fabricated at Low Temperature for Flexible Display

  • Lee, Youn-Jin;Lee, Kyoung-Min;Hwang, Jae-Dam;No, Kil-Sun;Yoon, Kap-Soo;Yang, Sung-Hoon;Hong, Wan-Shick
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.557-559
    • /
    • 2009
  • We attempted modulation of hydrogen dilution ratio to achieve both the minimal incubation layer and high deposition rate. The incubation layer thickness was estimated by transmission electron microscopy (TEM) and crystallization fraction was measured by Raman spectroscopy.

  • PDF

Investigation of Oxidation of Silicon Nanoparticles Capped with Butyl and Benzophenone against Its Stabilization (Benzophenone과 알킬 그룹으로 Capping된 실리콘 나노입자의 안정성에 대한 산화 연구)

  • Jang, Seunghyun
    • Journal of Integrative Natural Science
    • /
    • v.3 no.3
    • /
    • pp.133-137
    • /
    • 2010
  • New synthetic route and characterization of alkyl-capped nanocrystalline silicon (R-n-Si) were achieved from the reaction of silicon tetrachloride with sodium/benzophenone ketal reducing agent followed by n-butyllithium. Surface of silicon nanoparticles was derivatized with butyl group. Effect of oxidation of silicon nanoparticle with benzophenone was investigated for their stabilization. Optical characteristics of silicon nanoparticles were characterized by fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-vis), and photoluminescence (PL) spectroscopy. Butyl-capped silicon nanoparticles exhibited an emission band at 410 nm with excitation wavelength of 360 nm. Average size of n-butyl-capped silicon nanoparticles was obtained by particle size analyzer (PSA) and transmission electron microscopy (TEM). Average size of n-butyl-capped Si nanoparticles was about 6.5 nm.

Growth of Nanocrystalline Diamond Films on Poly Silicon (폴리 실리콘 위에서 나노결정질 다이아몬드 박막 성장)

  • Kim, Sun Tae;Kang, Chan Hyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.5
    • /
    • pp.352-359
    • /
    • 2017
  • The growth of nanocrystalline diamond films on a p-type poly silicon substrate was studied using microwave plasma chemical vapor deposition method. A 6 mm thick poly silicon plate was mirror polished and scratched in an ultrasonic bath containing slurries made of 30 cc ethanol and 1 gram of diamond powders having different sizes between 5 and 200 nm. Upon diamond deposition, the specimen scratched in a slurry with the smallest size of diamond powder exhibited the highest diamond particle density and, in turn, fastest diamond film growth rate. Diamond deposition was carried out applying different DC bias voltages (0, -50, -100, -150, -200 V) to the substrate. In the early stage of diamond deposition up to 2 h, the effect of voltage bias was not prominent probably because the diamond nucleation was retarded by ion bombardment onto the substrate. After 4 h of deposition, the film growth rate increased with the modest bias of -100 V and -150 V. With a bigger bias condition(-200 V), the growth rate decreased possibly due to the excessive ion bombardment on the substrate. The film grown under -150V bias exhibited the lowest contact angle and the highest surface roughness, which implied the most hydrophilic surface among the prepared samples. The film growth rate increased with the apparent activation energy of 21.04 kJ/mol as the deposition temperature increased in the range of $300{\sim}600^{\circ}C$.