DOI QR코드

DOI QR Code

Growth of Nanocrystalline Diamond Films on Poly Silicon

폴리 실리콘 위에서 나노결정질 다이아몬드 박막 성장

  • Kim, Sun Tae (Department of Advanced Materials Engineering, Korea Polytechnic University) ;
  • Kang, Chan Hyoung (Department of Advanced Materials Engineering, Korea Polytechnic University)
  • Received : 2017.09.27
  • Accepted : 2017.10.27
  • Published : 2017.10.31

Abstract

The growth of nanocrystalline diamond films on a p-type poly silicon substrate was studied using microwave plasma chemical vapor deposition method. A 6 mm thick poly silicon plate was mirror polished and scratched in an ultrasonic bath containing slurries made of 30 cc ethanol and 1 gram of diamond powders having different sizes between 5 and 200 nm. Upon diamond deposition, the specimen scratched in a slurry with the smallest size of diamond powder exhibited the highest diamond particle density and, in turn, fastest diamond film growth rate. Diamond deposition was carried out applying different DC bias voltages (0, -50, -100, -150, -200 V) to the substrate. In the early stage of diamond deposition up to 2 h, the effect of voltage bias was not prominent probably because the diamond nucleation was retarded by ion bombardment onto the substrate. After 4 h of deposition, the film growth rate increased with the modest bias of -100 V and -150 V. With a bigger bias condition(-200 V), the growth rate decreased possibly due to the excessive ion bombardment on the substrate. The film grown under -150V bias exhibited the lowest contact angle and the highest surface roughness, which implied the most hydrophilic surface among the prepared samples. The film growth rate increased with the apparent activation energy of 21.04 kJ/mol as the deposition temperature increased in the range of $300{\sim}600^{\circ}C$.

Keywords

References

  1. M. A. Prelas, G. Popovici, L. K. Biglow, Handbook of Industrial Diamonds and Diamond Films, vol I, II, III, Marcel Dekker, Inc., N.Y. (1997).
  2. A. Perret, W. Haenni, N. Skinner, X.-M. Tang, D. Gandini, C. Comninellis, B. Correa, G. Foti, Electrochemical behavior of synthetic diamond thin film electrodes, Diamond Relat. Mater. 8 (1999) 820-823. https://doi.org/10.1016/S0925-9635(98)00280-5
  3. I. Troester, M. Fryda, D. Hermann, L. Schaefer, W. Haenni, A. Perret, M. Blaschke, A. Kraft, M. Stadelmann, Electrochemical advanced oxidation process for water treatment using Diachem electrodes, Diamond Relat. Mater. 11 (2002) 640-645. https://doi.org/10.1016/S0925-9635(01)00706-3
  4. M. Fryda, T. Matthee, S. Mulcahy, A. Hampel, L. Schaefer, I. Troester, Fabrication and application of Diachem electrodes, Diamond Relat. Mater. 12 (2003) 1950-1956. https://doi.org/10.1016/S0925-9635(03)00261-9
  5. D. M. Gruen, Nanocrystalline Diamond Films, Annu. Rev. Mater. Sci. 29 (1999) 211-259. https://doi.org/10.1146/annurev.matsci.29.1.211
  6. J. E. Butler, A. V. Sumant, The CVD of nanodiamond materials, Chem. Vap. Deposition 14 (2008) 145-160. https://doi.org/10.1002/cvde.200700037
  7. O. Auciello, A. V. Sumant, Status review of the science and technology of ultrananocrystalline diamond films and application to multifunctional devices, Diamond Relat. Mater. 19 (2010) 699-718. https://doi.org/10.1016/j.diamond.2010.03.015
  8. D. Y. Jung, C. H. Kang, A kinetic study on the growth of nanocrystalline diamond particles to thin film on silicon substrate, J. Kor. Inst. Surf. Eng. 44 (2011) 131-136. https://doi.org/10.5695/JKISE.2011.44.4.131
  9. I.-S. Kim, C. H. Kang, Effect of DC bias on the growth of nanocrystalline diamond films by microwave plasma CVD, J. Kor. Inst. Surf. Eng. 46 (2013) 29-35. https://doi.org/10.5695/JKISE.2013.46.1.029
  10. B.-K. Na, C. H. Kang, Effect of metal interlayers on nanocrystalline diamond coating over WC-Co substrate, J. Kor. Inst. Surf. Eng. 46 (2013) 68-74. https://doi.org/10.5695/JKISE.2013.46.2.068
  11. D.-B. Park, J.-W. Myung, B.-K. Na, C. H. Kang, Growth of nanocrystalline diamond on W and Ti films, J. Kor. Inst. Surf. Eng. 46 (2013) 145-152. https://doi.org/10.5695/JKISE.2013.46.4.145
  12. J.-W. Myung, C. H. Kang, Nanocrystalline diamond coating on steel with SiC interlayer, J. Kor. Inst. Surf. Eng. 47 (2014) 75-80. https://doi.org/10.5695/JKISE.2014.47.2.075
  13. J. H. Im, C. H. Kang, Nanocrystalline diamond coated on SiC balls in tribometer, J. Kor. Inst. Surf. Eng. 47 (2014) 263-268. https://doi.org/10.5695/JKISE.2014.47.5.263
  14. M. Y. Yoon, J. H. Im, C. H. Kang, Heat spreading properties of CVD diamond coated Al heat sink, J. Kor. Inst. Surf. Eng. 48 (2015) 297-302. https://doi.org/10.5695/JKISE.2015.48.6.297
  15. K. O. Schweitz, R. B. Schou-Jensen, S. S. Eskildsen, Ultrasonic pre-treatment for enhanced diamond nucleation, Diamond Relat. Mater. 5 (1996) 206-210. https://doi.org/10.1016/0925-9635(95)00499-8
  16. Y. K. Liu, P. L. Tso, I. N. Lin, Y. Tzeng, Y. C. Chen, Comparative study of nucleation processes for the growth of nanocrystalline diamond, Diamond Relat. Mater. 15 (2006) 234-238. https://doi.org/10.1016/j.diamond.2005.06.020
  17. L.-J. Chen, N.-H. Tai, C.-Y. Lee, I.-N. Lin, Effects of pretreatment processes on improving the formation of ultrananocrystalline diamond, J. Appl. Phys. 101, 064308 (2007). https://doi.org/10.1063/1.2434008
  18. J. G. Buijnsters, L. Vazquez. J. J. ter Meulen, Substrate pre-treatment by ultrasonication with diamond powder mixtures for nucleation enhancement in diamond film growth, Diamond Relat. Mater. 18 (2009) 1239-1246. https://doi.org/10.1016/j.diamond.2009.04.007
  19. C.-A. Lu, L. Chang, B.-R. Huang, Growth of diamond films with bias during microwave plasma chemical vapor deposition, Diamond Relat. Mater. 11 (2002) 523-526. https://doi.org/10.1016/S0925-9635(01)00588-X
  20. P. K. Chu, L. Li, Characterization of amorphous and nanocrystalline carbon films, Mater. Chem. Phys. 96 (2006) 253-277. https://doi.org/10.1016/j.matchemphys.2005.07.048
  21. T. G. McCauley, D. M. Gruen, A. R. Krauss, Temperature dependence of the growth rate for nanocrystalline diamond films deposited from an $Ar/CH_4$ microwave plasma, Appl. Phys. Lett. 73 (1998) 1646-1648. https://doi.org/10.1063/1.122233
  22. X. Xiao, J. Birrel, J. E. Gerbi, O. Auciello, J. A. Carlisle, Low temperature growth of nanocrystalline diamond, J. Appl. Phys. 96 (2004) 2232-2239. https://doi.org/10.1063/1.1769609
  23. W. Kulisch, C. Popov, S. Boycheva, M. Jelinek, P. N. Gibson, V. Vorlicek, Influence of the substrate temperature on the properties of nanocrystalline diamond/amorphous carbon composite films, Surf. Coat. Technol. 200 (2006) 4731-4736. https://doi.org/10.1016/j.surfcoat.2005.04.007
  24. D. C. Barbosa, F. A. Almeida, R. F. Silva, N. G. Ferreira, V. J. Trava-Airoldi, E. J. Corat, Influence of substrate temperature on formation of ultrananocrystalline diamond films deposited by HFCVD argon-rich gas mixture, Diamond Relat. Mater. 18 (2009) 1283-1288. https://doi.org/10.1016/j.diamond.2009.05.002
  25. M. Sternberg, P. Zapol, L.A. Curtiss, Carbon dimers on the diamond (100) surface: Growth and nucleation, Phys. Rev. B 69 (2003) 205330.