• Title/Summary/Keyword: Nano-silicate

Search Result 90, Processing Time 0.033 seconds

Effect of Nano-silicate on the Mechanical, Electrical and Thermal Properties of Epoxy/Micro-silica Composite

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.3
    • /
    • pp.153-156
    • /
    • 2012
  • In order to develop electrical insulation materials, epoxy/micro-silica composite (EMC) and epoxy/micro-silica/nano-silicate composite (EMNC) were prepared, and their tensile and flexural strength, AC insulation breakdown strength and thermal conductivity and thermal expansion coefficient were compared. Nano-silicate was prepared in an epoxy matrix by our AC electric field process. All properties of the neat epoxy were improved by the addition of micro-silica, which was improved much further by the addition of nano-silicate to the EMC system.

AC Electrical and Mechanical Properties of Epoxy-Nano-Microsilica Mixed Composites for Eco-Friendly GIS Spacer (친환경 GIS Spacer용, 에폭시-나노-마이크로실리카 혼합 콤포지트의 교류 전기적, 기계적 특성)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.9
    • /
    • pp.1181-1188
    • /
    • 2018
  • In order to develop new insulating materials for GIS Spacer using environmentally friendly insulating gas, three kinds of dispersed liquid nano composites of solid epoxy /nano layered silicate filled material were prepared. And the epoxy/nano/micro silica composite was prepared by mixing epoxy/nano 3 phr dispersion/4 kinds of filler contents(40,50,60, 70wt%). The electrical insulation breakdown strengths of the nano and nano/micro mixed composites were evaluated by using 8 kinds of samples including the original epoxy. The mechanical tensile strength of the epoxy / nano / micro silica composite were evaluated, also. The TEM was measured to evaluate the internal structure of nano/micro composites. As a result, it was confirmed that the layered silicate nano particles was exfoliated through the process of inserting epoxy resin between silicate layers and the layers. In addition, dispersion of nano / micro silica resulted in improvement of electrical insulation breakdown strength with increase of filling amount of dense tissue with nanoparticles inserted between microparticles. In addition, the tensile strength showed a similar tendency, and as the content of microsilica filler increased, the mechanical improvement was further increased.

Synthesis of Nano-Clay and The Application for Nanocomposite (나노클레이의 합성 및 나노복합재로의 응용)

  • Jeong Soon-Yong;Jeong Eon-Il
    • Journal of Powder Materials
    • /
    • v.12 no.2 s.49
    • /
    • pp.122-130
    • /
    • 2005
  • Layered silicate was synthesized at hydrothermal condition from silica adding to various materials. Nano-clay was synthesized by intercaltion of various amine compounds into synthetic layered silicate. The products were analysed by XRD, SEM, and FT-IR in order to examine the condition of synthesis and intercalation. From the results, it was confirmed that kaolinite was synthesized from precipitated silica and gibbsite at $220^{\circ}C$ during 10 days, and hetorite was synthesized from silica sol at $100^{\circ}C$ during 48 h. Na-Magadiite was synthesized from silica gel at $150^{\circ}C$ during 72 h, and Na-kenyaite was synthesized from silica gel at $160^{\circ}C$ during 84 h. Nano-clay was prepared using synthetic layered silicate intercalated with various amine compounds. Kenyaite was easily intercalated by various organic compounds, and has the highest basal-spacing value among other layered silicates. Basal-spacing was changed according to the length of alkyl chain of amine comopounds. Polymer can be easily intercalated by dispersion with large space of interlayer. Finally, epoxy/nano-clay nanocomposite can be easily prepared.

Synthesis of High Purity Nano-Silica Using Water Glass (물유리를 이용한 고순도 나노실리카 제조)

  • Choi, Jin Seok;Lee, Hyun-Kwuon;An, Sung Jin
    • Korean Journal of Materials Research
    • /
    • v.24 no.5
    • /
    • pp.271-276
    • /
    • 2014
  • Silica nano-powder (SNP) is an inorganic material able to provide high-performance in various fields because of its multiple functions. Methods used to synthesize high purity SNP, include crushing silica minerals, vapor reaction of silica chloride, and a sol-gel process using TEOS and sodium silicate solution. The sol-gel process is the cheapest method for synthesis of SNP, and was used in this study. First, we investigated the shape and the size of the silica-powder particles in relation to the variation of HCl and sodium silicate concentrations. After drying, the shape of nano-silica powder differed in relation to variations in the HCl concentration. As the pH of the solution increased, so did the density of crosslinking. Initially, there was NaCl in the SNP. To increase its purity, we adopted a washing process that included centrifugation and filtration. After washing, the last of the NaCl was removed using DI water, leaving only amorphous silica powder. The purity of nano-silica powder synthesized using sodium silicate was over 99.6%.

Preparation and Surface Properties of Polysulfone/Organophilic Layered Silicate Nanocomposites (폴리설폰/친유기화 층상실리케이트 나노복합체의 제조 및 표면 특성)

  • Sul, Kyung-Il;Ma, Seung Lac;Kim, Yong Seok;Lee, Jae Heung;Won, Jong Chan
    • Journal of Adhesion and Interface
    • /
    • v.4 no.4
    • /
    • pp.15-21
    • /
    • 2003
  • Polysulfone/organophilic layered silicate nanocomposites were prepared in the range of 0.25 to 9 wt% of organophilic-layered silicate by solution blend. Nano-hybridized films were cast from the blend solution. Exfoliation and intercalation of the polysulfone/organophiliclayered silicate nanocomposite films were confirmed by an X-ray diffractometer and a transmission electron microscope. Surface morphologies of polysulfone/organophilic layered silicate nanocomposite films were determined by a scanning electronic microscope and an atomic force microscope. When the organophilic layered silicate was added more than 1.5 wt%, the surface roughness (RMS) was rapidly increased because clusters of intercalated organophilic layered silicate particles existed on the polysulfone/organophilic-layered silicate film surface. Surface tension revealed an upward tendency over the contents of 1.5 wt% organophilic layered silicate in polysulfone/organophilic layered silicate nanocomposite. The change of surface morphology in polysulfone/organophilic layered silicate nanocomposite were affected by nano scale dispersed and intercalated organophilic layered silicate particles.

  • PDF

Organic Passivation Material-Polyvinyl Alcohol (PVA)/Layered Silicate Nanocomposite-for Organic Thin Film Transistor

  • Ahn, Taek;Suk, Hye-Jung;Yi, Mi-Hye
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1539-1542
    • /
    • 2007
  • We have synthesized novel organic passivation materials to protect organic thin film transistors (OTFTs) from $H_2O$ and $O_2$ using polyvinyl alcohol (PVA)/layered silicate (SWN) nano composite system. Up to 3 wt% of layered silicate to PVA, very homogeneous nanocomposite solution was prepared.

  • PDF

Long-term AC Electrical Treeing Behaviors of Epoxy/Layered Silicate Nanocomposites Prepared by a 3-Roll Mill

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.2
    • /
    • pp.85-88
    • /
    • 2012
  • Studies on the effects of layered silicate content on the AC electrical treeing and breakdown behaviors of epoxy/layered silicate nanocomposites were carried out in needle-plate electrode geometry. Wide-angle X-ray diffraction (WAXD) analysis and transmission electron microscopy (TEM) observation showed that 1 wt% of the multilayered silicate was fully exfoliated into nano-sized monolayers in the epoxy matrix however, over 3 wt% of the silicate was in an intercalated state. When 1 wt% layered silicates were incorporated, an electrical tree was initiated in 439 min and propagated at a speed of 2.3 ${\mu}m$/min after applying 781.4 kV/mm, representing a decreased in starting initiation time by a factor of 11.0 and increase in propagation speed by a factor 8.2 in comparison with neat epoxy resin. These values were in great decline after the layered silicate content was increased to 3wt% which implies that the exfoliated silicate blocked the tree initiation and propagation processes effectively. However the effect was largely decreased in the intercalated state.

Electrical Properties for Micro-and-Nano- Mixture Composites using Electric Field Dispersion (전기장분산법을 이용한 나노와 마이크로 혼합된 콤포지트의 전기적 특성)

  • Cho, Dae-Lyoung;Kim, Jong-Ho;Park, Jae-Jun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.32-32
    • /
    • 2010
  • A epoxy/multilayered silicate nanocomposite was prepared by a new AC electric application method and micro silica particle was poured into the nanocomposite in order to prepare epoxy/micro-and-nano- mixed composites (EMNC). Electric insulation breakdown strength was measured in a sphere-sphere electrode system designed for the prevention of edge breakdown and the data were estimated by Weibull plot. As the exfoliated silicate nano-plates were homogeniously dispersed in the micro silica particles, the insulation property was higherd.

  • PDF

Partial Discharge Resistance According to Frequency Acceleration Deterioration of Epoxy/Layered Silicate Nanocomposites (에폭시/층상실리케이트 나노콤포지트의 주파수 가속열화에 따른 부분방전 저항성)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1694-1699
    • /
    • 2013
  • Frequency accelerated partial discharge resistance (PDR) aging of epoxy/layered silicate nanocomposite with 1.5wt % additions of layered silicate was investigated in comparison with that of epoxy without layered silicate in terms of PD(partial discharge) erosion depth. It was found that the change in the erosion depth is far smaller in specimens with layered silicate than those without layered silicate nano particles. Frequency acceleration can be done from 60Hz to 1000Hz. But the depth of erosion is less proportional to frequency. Acceleration factor is almost 2 times between 500Hz and 1000Hz, but it is much less than about 8.3 times between 60Hz and 500Hz. This superior PD resistance is caused by the presence of nanofillers, anano-effect due to closely packed nanofillers, and strong chemical bonds at layered silicate nanofillers /resin interfaces.

Durability Characteristics of Concrete with Nano Level Ceramic Based Coating (나노합성 세라믹계 도장재를 도포한 콘크리트의 내구성능)

  • Kim, Seong-Soo;Lee, Jeong-Bae;Han, Seung-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.639-646
    • /
    • 2007
  • This study performed several tests for the durability of the concrete coated with nano synthesis ceramics which do not contain volatile organic compounds harmful to environment. The tests were adhesion test on dry and humid concrete, SEM test, MIP analysis, carbonation, chloride diffusion by electronic facilitation, freezing-thawing resistance, alkaline resistance, and brine resistance test. In the adhesion test on dry and humid concrete, nano synthesis ceramics coating produced the highest results among all the coatings tested. Nano synthesis ceramics adhered solidly on the concrete surface. The adhesive strength seemed to result from the hydrogen bond between nano synthesis ceramics which are inorganic and generated by hydrolysis and re-condensation reaction and the concrete's hydrates such as calcium silicate aluminate or calcium silicate hydrate. SEM test and MIP analysis results show surface structure with finest crevices pore in the nano synthesis ceramics coating applied concretes. In the carbonation, chloride diffusion, and freezing-thawing resistance tests, the concretes with nano synthesis ceramics coating indicated the best results. Based on these test results, further progress in application of nano synthesis ceramics coatings to various concrete structures including costal structures and sewerage arrangements can be expected.