• 제목/요약/키워드: Nano-scale Process

검색결과 253건 처리시간 0.026초

Al-2Zn-1Cu-0.3Mg합금의 Sc첨가에 따른 미세조직, 전기전도도, 열전도도 및 기계적 특성 변화 (Effect of Sc Addition on Microstructure, Electrical Conductivity, Thermal Conductivity and Mechanical Properties of Al-2Zn-1Cu-0.3Mg Based Alloy)

  • 나상수;김용호;손현택;이성희
    • 한국재료학회지
    • /
    • 제30권10호
    • /
    • pp.542-549
    • /
    • 2020
  • Effects of Sc addition on microstructure, electrical conductivity, thermal conductivity and mechanical properties of the as-cast and as-extruded Al-2Zn-1Cu-0.3Mg-xSc (x = 0, 0.25, 0.5 wt%) alloys are investigated. The average grain size of the as-cast Al-2Zn-1Cu-0.3Mg alloy is 2,334 ㎛; however, this value drops to 914 and 529 ㎛ with addition of Sc element at 0.25 wt% and 0.5 wt%, respectively. This grain refinement is due to primary Al3Sc phase forming during solidification. The as-extruded Al-2Zn-1Cu-0.3Mg alloy has a recrystallization structure consisting of almost equiaxed grains. However, the as-extruded Sc-containing alloys consist of grains that are extremely elongated in the extrusion direction. In addition, it is found that the proportion of low-angle grain boundaries below 15 degree is dominant. This is because the addition of Sc results in the formation of coherent and nano-scale Al3Sc phases during hot extrusion, inhibiting the process of recrystallization and improving the strength by pinning of dislocations and the formation of subgrain boundaries. The maximum values of the yield and tensile strength are 126 MPa and 215 MPa for the as-extruded Al-2Zn-1Cu-0.3Mg-0.25Sc alloy, respectively. The increase in strength is probably due to the existence of nano-scale Al3Sc precipitates and dense Al2Cu phases. Thermal conductivity of the as-cast Al-2Zn-1Cu-0.3Mg-xSc alloy is reduced to 204, 187 and 183 W/MK by additions of elemental Sc of 0, 0.25 and 0.5 wt%, respectively. On the other hand, the thermal conductivity of the as-extruded Al-2Zn-1Cu-0.3Mg-xSc alloy is about 200 W/Mk regardless of the content of Sc. This is because of the formation of coherent Al3Sc phase, which decreases Sc content and causes extremely high electrical resistivity.

Characterization of Wavelength Effect on Photovoltaic Property of Poly-Si Solar Cell Using Photoconductive Atomic Force Microscopy (PC-AFM)

  • Heo, Jinhee
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권3호
    • /
    • pp.160-163
    • /
    • 2013
  • We investigated the effect of light intensity and wavelength of a solar cell device by using photoconductive atomic force microscopy (PC-AFM). The $POCl_3$ diffusion doping process was used to produce a p-n junction solar cell device based on a Poly-Si wafer and the electrical properties of prepared solar cells were measured using a solar cell simulator system. The measured open circuit voltage ($V_{oc}$) is 0.59 V and the short circuit current ($I_{sc}$) is 48.5 mA. Also, the values of the fill factors and efficiencies of the devices are 0.7% and approximately 13.6%, respectively. In addition, PC-AFM, a recent notable method for nano-scale characterization of photovoltaic elements, was used for direct measurements of photoelectric characteristics in local instead of large areas. The effects of changes in the intensity and wavelength of light shining on the element on the photoelectric characteristics were observed. Results obtained through PC-AFM were compared with the electric/optical characteristics data obtained through a solar simulator. The voltage ($V_{PC-AFM}$) at which the current was 0 A in the I-V characteristic curves increased sharply up to 1.8 $mW/cm^2$, peaking and slowly falling as light intensity increased. Here, $V_{PC-AFM}$ at 1.8 $mW/cm^2$ was 0.29 V, which corresponds to 59% of the average $V_{oc}$ value, as measured with the solar simulator. Also, while light wavelength was increased from 300 nm to 1,100 nm, the external quantum efficiency (EQE) and results from PC-AFM showed similar trends at the macro scale, but returned different results in several sections, indicating the need for detailed analysis and improvement in the future.

Photoconductive Atomic Force Microscopy를 이용한 빛의 세기 및 파장의 변화에 따른 폴리실리콘 태양전지의 광전특성 분석 (Characterization of Light Effect on Photovoltaic Property of Poly-Si Solar Cell by Using Photoconductive Atomic Force Microscopy)

  • 허진희
    • 한국재료학회지
    • /
    • 제28권11호
    • /
    • pp.680-684
    • /
    • 2018
  • We investigate the effect of light intensity and wavelength of a solar cell device using photoconductive atomic force microscopy(PC-AFM). A $POCl_3$ diffusion doping process is used to produce a p-n junction solar cell device based on a polySi wafer, and the electrical properties of prepared solar cells are measured using a solar cell simulator system. The measured open circuit voltage($V_{oc}$) is 0.59 V and the short circuit current($I_{sc}$) is 48.5 mA. Moreover, the values of the fill factors and efficiencies of the devices are 0.7 and approximately 13.6 %, respectively. In addition, PC-AFM, a recent notable method for nano-scale characterization of photovoltaic elements, is used for direct measurements of photoelectric characteristics in limited areas instead of large areas. The effects of changes in the intensity and wavelength of light shining on the element on the photoelectric characteristics are observed. Results obtained through PC-AFM are compared with the electric/optical characteristics data obtained through a solar simulator. The voltage($V_{PC-AFM}$) at which the current is 0 A in the I-V characteristic curves increases sharply up to $18W/m^2$, peaking and slowly falling as light intensity increases. Here, $V_{PC-AFM}$ at $18W/m^2$ is 0.29 V, which corresponds to 59 % of the average $V_{oc}$ value, as measured with the solar simulator. Furthermore, while the light wavelength increases from 300 nm to 1,100 nm, the external quantum efficiency(EQE) and results from PC-AFM show similar trends at the macro scale but reveal different results in several sections, indicating the need for detailed analysis and improvement in the future.

Biogenic TiO2 나노입자 전처리가 클로로포름 광분해에 미치는 영향 (Effect of Pretreatment of Biogenic Titanium Dioxide on Photocatalytic Transformation of Chloroform)

  • 권수열;;;김영
    • 한국물환경학회지
    • /
    • 제27권1호
    • /
    • pp.98-103
    • /
    • 2011
  • Photocatalysis using UV light and catalysts is an attractive low temperature and non-energy- intensive method for remediation of a wide range of chemical contaminants like chloroform (CF). Recently development of environmental friendly and sustainable catalytic systems is needed before such catalysts can be routinely applied to large-scale remediation or drinking water treatment. Titanium dioxide is a candidate material, since it is stable, highly reactive, and inexpensive. Diatoms are photosynthetic, single-celled algae that make a microscale silica shell with nano scale features. These diatoms have an ability to biologically fabricate $TiO_2$ nanoparticles into this shell in a process that parallels nanoscale silica mineralization. We cultivated diatoms, metabolically deposited titanium into the shell by using a two-stage photobioreactor and used this biogenic $TiO_2$ to this study. In this study we evaluated how effectively biogenic $TiO_2$ nanoparticles transform CF compared with chemically-synthesized $TiO_2$ nanoparticlesthe and effect of pretreatment of diatom-produced $TiO_2$ nanoparticles on photocatalytic transformation of CF. The rate of CF transformation by diatom-$TiO_2$ particles is a factor of 3 slower than chemically-synthesized one and chloride ion production was also co-related with CF transformation, and 79~91% of CF mineralization was observed in two $TiO_2$ particles. And the period of sonication and mass transfer due to particle size, evaluated by difference of oxygen tention does not affect on the CF transformation. Based on the XRD analysis we conclude that slower CF transformation by diatom-$TiO_2$ might be due to incomplete annealing to the anatase form.

MOD-TFA 공정에 의한 YBCO박막제조시 과잉 yttrium첨가 효과에 관한 연구 (Effects of Excess Yttrium Addition on YBCO Thin Films Prepared by TFA-MOD Process)

  • 이승이;송슬아;김병주;박진아;김호진;이희균;홍계원;장석헌;주진호;유재무
    • Progress in Superconductivity
    • /
    • 제7권1호
    • /
    • pp.87-91
    • /
    • 2005
  • [ $YBa_{2}Cu_{3}O_{7-x}$ ] thin films were fabricated on $LaAlO_3$(100) substrate by TFA-MOD process. Yttrium-excess (0, 2.5, 5, 10, 15, 20 $at\%$) coating solution was prepared by adding extra amount of yttrium into a stoichiometric(Y:Ba:Cu=1:2:3) TFA precursor solution. Results are presented concerning the influence of excess yttrium additions on the microstructure development and superconducting properties of $YBa_{2}Cu_{3}O_{7-x}$ film. Large sized CuO particles was observed by SEM EDS investigation. The addition of excess yttrium affected little on $T_c$ of $YBa_{2}Cu_{3}O_{7-x}$ film. $J_c$ of YBCO film was enhanced with excess yttrium addition. Jc maximum of $2.21\;MA/cm^2$ (77 K, self field) appeared with the $15\;at\%$ addition of excess yttrium. With further yttrium addition up to $20\;at\%$, Jc decreased down to $0.9\;MA/cm^2$.

  • PDF

Size Tailored Nanoparticles of ZrN Prepared by Single-Step Exothermic Chemical Route

  • Lee, Sang-Ki;Park, Kyung-Tae;Ryu, Hong-Youl;Nersisyan, Hayk H.;Lee, Kap-Ho;Lee, Jong-Hyeon
    • 한국재료학회지
    • /
    • 제22권5호
    • /
    • pp.243-248
    • /
    • 2012
  • ZrN nanoparticles were prepared by an exothermic reduction of $ZrCl_4$ with $NaN_3$ in the presence of NaCl flux in a nitrogen atmosphere. Using a solid-state combustion approach, we have demonstrated that the zirconium nitride nanoparticles synthesis process can be completed in only several minutes compared with a few hours for previous synthesis approaches. The chemistry of the combustion process is not complex and is based on a metathesis reaction between $ZrCl_4$ and $NaN_3$. Because of the low melting and boiling points of the raw materials it was possible to synthesize the ZrN phase at low combustion temperatures. It was shown that the combustion temperature and the size of the particles can be readily controlled by tuning the concentration of the NaCl flux. The results show that an increase in the NaCl concentration (from 2 to 13 M) results in a temperature decrease from 1280 to $750^{\circ}C$. ZrN nanoparticles have a high surface area (50-70 $m^2/g$), narrow pore size distribution, and nano-particle size between 10 and 30 nm. The activation energy, which can be extracted from the experimental combustion temperature data, is: E = 20 kcal/mol. The method reported here is self-sustaining, rapid, and can be scaled up for a large scale production of a transition metal nitride nanoparticle system (TiN, TaN, HfN, etc.) with suitable halide salts and alkali metal azide.

물분해용 Fe2O3/Na2Ti6O13/FTO 박막 제조 및 특성평가 (Fabrication and (Photo)Electrochemical Properties of Fe2O3/Na2Ti6O13/FTO Films for Water Splitting Process)

  • 윤강섭;구혜경;강우승;김선재
    • Corrosion Science and Technology
    • /
    • 제11권2호
    • /
    • pp.65-69
    • /
    • 2012
  • One dimensional(1D) $Na_2Ti_6O_{13}$ nanorods with 70 nm in diameter was synthesized by a molten salt method. Using the synthesized nanorods, about 750 nm thick $Na_2Ti_6O_{13}$ film was coated on Fluorine-doped tin oxide(FTO) glasss substrate by the Layer-by-layer self-assembly(LBL-SA) method in which a repetitive self-assembling of ions containing an opposite electric charge in an aqueous solution was utilized. Using the Kubelka-Munk function, the band gap energy of the 1D-$Na_2Ti_6O_{13}$ nanorods was nalyzed to be 3.5 eV. On the other hand, the band gap energy of the $Na_2Ti_6O_{13}$ film coated on FTO was found to be a reduced value of 2.9 eV, resulting from the nano-scale and high porosity of the film processed by LBL-SA method, which was favorable for the photo absorption capability. A significant improvement of photocurrent and onset voltage was observed with the $Na_2Ti_6O_{13}$ film incorporated into the conventional $Fe_2O_3$ photoelectrode: the photocurrent increased from 0.25 to 0.82 mA/$cm^2$, the onset voltage decreased from 0.95 to 0.78 V.

Plasma Etching Process based on Real-time Monitoring of Radical Density and Substrate Temperature

  • Takeda, K.;Fukunaga, Y.;Tsutsumi, T.;Ishikawa, K.;Kondo, H.;Sekine, M.;Hori, M.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.93-93
    • /
    • 2016
  • Large scale integrated circuits (LSIs) has been improved by the shrinkage of the circuit dimensions. The smaller chip sizes and increase in circuit density require the miniaturization of the line-width and space between metal interconnections. Therefore, an extreme precise control of the critical dimension and pattern profile is necessary to fabricate next generation nano-electronics devices. The pattern profile control of plasma etching with an accuracy of sub-nanometer must be achieved. To realize the etching process which achieves the problem, understanding of the etching mechanism and precise control of the process based on the real-time monitoring of internal plasma parameters such as etching species density, surface temperature of substrate, etc. are very important. For instance, it is known that the etched profiles of organic low dielectric (low-k) films are sensitive to the substrate temperature and density ratio of H and N atoms in the H2/N2 plasma [1]. In this study, we introduced a feedback control of actual substrate temperature and radical density ratio monitored in real time. And then the dependence of etch rates and profiles of organic films have been evaluated based on the substrate temperatures. In this study, organic low-k films were etched by a dual frequency capacitively coupled plasma employing the mixture of H2/N2 gases. A 100-MHz power was supplied to an upper electrode for plasma generation. The Si substrate was electrostatically chucked to a lower electrode biased by supplying a 2-MHz power. To investigate the effects of H and N radical on the etching profile of organic low-k films, absolute H and N atom densities were measured by vacuum ultraviolet absorption spectroscopy [2]. Moreover, using the optical fiber-type low-coherence interferometer [3], substrate temperature has been measured in real time during etching process. From the measurement results, the temperature raised rapidly just after plasma ignition and was gradually saturated. The temporal change of substrate temperature is a crucial issue to control of surface reactions of reactive species. Therefore, by the intervals of on-off of the plasma discharge, the substrate temperature was maintained within ${\pm}1.5^{\circ}C$ from the set value. As a result, the temperatures were kept within $3^{\circ}C$ during the etching process. Then, we etched organic films with line-and-space pattern using this system. The cross-sections of the organic films etched for 50 s with the substrate temperatures at $20^{\circ}C$ and $100^{\circ}C$ were observed by SEM. From the results, they were different in the sidewall profile. It suggests that the reactions on the sidewalls changed according to the substrate temperature. The precise substrate temperature control method with real-time temperature monitoring and intermittent plasma generation was suggested to contribute on realization of fine pattern etching.

  • PDF

Cu(dmamb)2 전구체를 이용한 구리박막제조 시 캐리어가스가 박막성장에 미치는 영향

  • 최종문;이도한;진성언;이승무;변동진;정택모;김창균
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 추계학술발표대회
    • /
    • pp.29.2-29.2
    • /
    • 2009
  • 구리는 낮은 비저항, 높은 열전도도, 우수한 electromigration(EM)저항특성 등을 바탕으로 차세대 nano-scale집적회로의 interconnect application에 적합한 금속재료로서 각광받고 있다. copper interconnect는 damascene process 를주로 이용하는데 CVD를 이용하면 step coverage가우수한 seed layer얻을 수 있어 고집적 소자의 구현이 가능하다. 최근에 비 균등화 반응(disproportionationreaction)을 이용하여 고 순도 구리박막을 제조하기위해 $\beta$-diketonate Cu(I) Lewis-base의 전구체를 많이 이용하는데 그중에서 hexafluoroacetylacetonate(hfac)Cu(I)vinyltrimethylsilane (VTMS)가 널리 이용되고 있다. 그러나 (hfac)Cu(I)(VTMS) 또는 유사계열의 전구체들은 열적안정성및 보관안정성이 부족하여 실제 양산공정에 적합하지 못한 단점이 있었다. 본 연구에 이용된 2가 전구체Cu(dmamb)2는 높은 증기압($70^{\circ}C$, 0.9torr)을 가지며 종래에 주로 이용하던 1가 전구체 (hfac)Cu(VTMS)에 비해 높은 활성화 에너지(~113 kJ/mol)를가짐으로서 열적안정성 및 보관안정성이 우수하다. 다른 한편으로 2가전구체는 안정성이 우수한 만큼 낮은 증기압을 극복하기 위해 리간드에 플루오르를 주로 치환하여 증기압을 높이는데 플루오르는 성장하는 박막의 접착력을약하게 하는 단점을 가진다. 하지만 본 연구에 사용된 Cu(dmamb)2는 리간드에 플루오르를 포함하지 않으며, 따라서 고품질의 박막을 용이한성장환경에서 제조할 수 있는 장점들을 제공한다. 비활성가스 분위기에서 2가전구체는 열에너지에 의해 리간드의 자가환원에따라 금속-리간드 분해가 발생한다. 하지만 수소분위기에서는수소가 환원제로 작용하여 리간드의 분해를 용이하게 하는 특징을 가지며 따라서 비활성분위기일 때 비해 낮은 성장온도를 가진다. 또한 수소는 잔류하는 리간드 및 불순물과 결합하여 휘발성화학종들을 생성하여 고순도의 구리박막제조를 가능하게한다.

  • PDF

MOCVD법에 의해 나노급 구조 안에 증착된 InSbTe 상변화 재료 (InSbTe phase change materials deposited in nano scaled structures by metal organic chemical vapor deposition)

  • 안준구;박경우;조현진;허성기;윤순길
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.52-52
    • /
    • 2009
  • To date, chalcogenide alloy such as $Ge_2Sb_2Te_5$(GST) have not only been rigorously studied for use in Phase Change Random Access Memory(PRAM) applications, but also temperature gap to make different states is not enough to apply to device between amorphous and crystalline state. In this study, we have investigated a new system of phase change media based on the In-Sb-Te(IST) ternary alloys for PRAM. IST chalcogenide thin films were prepared in trench structure (aspect ratio 5:1 of length=500nm, width=100nm) using Tri methyl Indium $(In(CH_3)_4$), $Sb(iPr)_3$ $(Sb(C_3H_7)_3)$ and $Te(iPr)_2(Te(C_3H_7)_2)$ precursors. MOCVD process is very powerful system to deposit in ultra integrated device like 100nm scaled trench structure. And IST materials for PRAM can be grown at low deposition temperature below $200^{\circ}C$ in comparison with GST materials. Although Melting temperature of 1ST materials was $\sim 630^{\circ}C$ like GST, Crystalline temperature of them was ~$290^{\circ}C$; one of GST were $130^{\circ}C$. In-Sb-Te materials will be good candidate materials for PRAM applications. And MOCVD system is powerful for applying ultra scale integration cell.

  • PDF