• 제목/요약/키워드: Nano-resonator

검색결과 33건 처리시간 0.027초

Non-stationary vibration and super-harmonic resonances of nonlinear viscoelastic nano-resonators

  • Ajri, Masoud;Rastgoo, Abbas;Fakhrabadi, Mir Masoud Seyyed
    • Structural Engineering and Mechanics
    • /
    • 제70권5호
    • /
    • pp.623-637
    • /
    • 2019
  • This paper analyzes the non-stationary vibration and super-harmonic resonances in nonlinear dynamic motion of viscoelastic nano-resonators. For this purpose, a new coupled size-dependent model is developed for a plate-shape nano-resonator made of nonlinear viscoelastic material based on modified coupled stress theory. The virtual work induced by viscous forces obtained in the framework of the Leaderman integral for the size-independent and size-dependent stress tensors. With incorporating the size-dependent potential energy, kinetic energy, and an external excitation force work based on Hamilton's principle, the viscous work equation is balanced. The resulting size-dependent viscoelastically coupled equations are solved using the expansion theory, Galerkin method and the fourth-order Runge-Kutta technique. The Hilbert-Huang transform is performed to examine the effects of the viscoelastic parameter and initial excitation values on the nanosystem free vibration. Furthermore, the secondary resonance due to the super-harmonic motions are examined in the form of frequency response, force response, Poincare map, phase portrait and fast Fourier transforms. The results show that the vibration of viscoelastic nanosystem is non-stationary at higher excitation values unlike the elastic ones. In addition, ignoring the small-size effects shifts the secondary resonance, significantly.

의복용 자기공진형 무선전력전송 시스템을 위한 평면형 직물공진기의 설계 및 연구 (Analysis and Design of Planar Textile Resonator for Wearable Magnetic Resonance-Wireless Power Transfer)

  • 강석현;정창원
    • 전자공학회논문지
    • /
    • 제53권8호
    • /
    • pp.119-126
    • /
    • 2016
  • 본 논문에서는 의복용 무선전력전송 시스템을 구축을 위한 평면형 직물공진기를 제안하고, 공진기에 사용된 의복용 직물기판의 재질별 특성을 분석하였다. 평면형 직물공진기는 공진주파수가 1-10 MHz가 되도록 직물기판 위에 전도성 물질로 루프 및 코일을 평면 설계하였다. 의복용으로 많이 사용되고 있는 폴리에스테르 섬유와 면을 직물기판으로 사용하였으며, 평면 루프와 코일은 동테이프(copper tape)와 실버페이스트(silver paste)로 설계하였다. 자기공진형 무선전력전송 시스템에 적용된 직물의 재질별 특성을 분석하기 위해 송신부와 수신부를 대칭으로 설계하였다. 실험 결과, 낮은 유전상수 및 비교적 두꺼운 두께를 가진 직물기판과 표면저항이 작은 도체성 재질의 패턴(루프 및 코일)으로 제작되었을 때, 의복용 무선전력전송 시스템이 높은 전송효율을 보였다. 본 연구를 통해 제안된 평면형 직물 공진기는 무선전력전송 기술의 영역을 의복용으로 넓힐 수 있는 가능성을 보여주었다.

Vibration of nonlocal perforated nanobeams with general boundary conditions

  • Eltaher, Mohamed A.;Mohamed, Norhan A.
    • Smart Structures and Systems
    • /
    • 제25권4호
    • /
    • pp.501-514
    • /
    • 2020
  • This article presents a comprehensive model to investigate a free vibration and resonance frequencies of nanostructure perforated beam element as nano-resonator. Nano-scale size dependency of regular square perforated beam is considered by using nonlocal differential form of Eringen constitutive equation. Equivalent mass, inertia, bending and shear rigidities of perforated beam structure are developed. Kinematic displacement assumptions of both Timoshenko and Euler-Bernoulli are assumed to consider thick and thin beams, respectively. So, this model considers the effect of shear on natural frequencies of perforated nanobeams. Equations of motion for local and nonlocal elastic beam are derived. After that, analytical solutions of frequency equations are deduced as function of nonlocal and perforation parameters. The proposed model is validated and verified with previous works. Parametric studies are performed to illustrate the influence of a long-range atomic interaction, hole perforation size, number of rows of holes and boundary conditions on fundamental frequencies of perforated nanobeams. The proposed model is supportive in designing and production of nanobeam resonator used in nanoelectromechanical systems NEMS.

Resonance Frequency and Quality Factor Tuning in Electrostatic Actuation of Nanoelectromechanical Systems

  • Kim, Dong-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • 제19권9호
    • /
    • pp.1711-1719
    • /
    • 2005
  • In an electro statically actuated nanoelectromechanical system (NEMS) resonator, it is shown that both the resonance frequency and the resonance quality (Q) factor can be manipulated. How much the frequency and quality factor can be tuned by excitation voltage and resistance on a doubly-clamped beam resonator is addressed. A mathematical model for investigating the tuning effects is presented. All results are shown based on the feasible dimension of the nanoresonator and appropriate external driving voltage, yielding up to 20 MHz resonance frequency. Such parameter tuning could prove to be a very convenient scheme to actively control the response of NEMS for a variety of applications.

다중벽 탄소나노튜브를 이용한 공진기 제작 (Fabrication of a Resonator using suspended Multi-wall Carbon Nanotubes)

  • 이종홍;서희원;송진원;한창수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.465-466
    • /
    • 2006
  • A single-wall carbon nanotube (SWCNT) has been studied as a material of Nano-Eletro-Mechanical-System (NEMS) device together with various nanowires. In order for oscillation of a multi-wall carbon nanotube (MWCNT) or a single-walled carbon nanotube (SWCNT) on plane surface, it needs suspension of a CNT across trench electrodes. So we propose fabrication method of a MWCNT resonator using dielectrophoresis and show successful results of suspeneded MWNT. Thin electrodes with large gaps could not suspend small diameter MWNT but thicker electrodes could. Thin MWNT could be suspended only when the electrode gap was reduced.

  • PDF

Fabrication of a Bottom Electrode for a Nano-scale Beam Resonator Using Backside Exposure with a Self-aligned Metal Mask

  • Lee, Yong-Seok;Jang, Yun-Ho;Bang, Yong-Seung;Kim, Jung-Mu;Kim, Jong-Man;Kim, Yong-Kweon
    • Journal of Electrical Engineering and Technology
    • /
    • 제4권4호
    • /
    • pp.546-551
    • /
    • 2009
  • In this paper, we describe a self-aligned fabrication method for a nano-patterned bottom electrode using flood exposure from the backside. Misalignments between layers could cause the final devices to fail after the fabrication of the nano-scale bottom electrodes. A self-alignment was exploited to embed the bottom electrode inside the glass substrate. Aluminum patterns act as a dry etching mask to fabricate glass trenches as well as a self-aligned photomask during the flood exposure from the backside. The patterned photoresist (PR) has a negative sidewall slope using the flood exposure. The sidewall slopes of the glass trench and the patterned PR were $54.00^{\circ}$ and $63.47^{\circ}$, respectively. The negative sidewall enables an embedment of a gold layer inside $0.7{\mu}m$ wide glass trenches. Gold residues on the trench edges were removed by the additional flood exposure with wet etching. The sidewall slopes of the patterned PR are related to the slopes of the glass trenches. Nano-scale bottom electrodes inside the glass trenches will be used in beam resonators operating at high resonant frequencies.

Nano and micro structures for label-free detection of biomolecules

  • Eom, Kil-Ho;Kwon, Tae-Yun;Sohn, Young-Soo
    • 센서학회지
    • /
    • 제19권6호
    • /
    • pp.403-420
    • /
    • 2010
  • Nano and micro structure-based biosensors are promising tool for label-free detection of biomolecular interactions with great accuracy. This review gives a brief survey on nano and micro platforms to sense a variety of analytes such as DNA, proteins and viruses. Among incredible nano and micro structure for bio-analytical applications, the scope of this paper will be limited to micro and nano resonators and nanowire field-effect transistors. Nanomechanical motion of the resonators transducers biological information to readable signals. They are commonly combined with an optical, capacitive or piezo-resistive detection systems. Binding of target molecule to the modified surface of nanowire modulates the current of the nanowire through electrical field-effect. Both detection methods have advantages of label-free, real-time and high sensitive detection. These structures can be extended to fabricate array-type sensors for multiplexed detection and high-throughput analysis. The biosensors based on these structures will be applied to lab-on-a-chip platforms and point-of-care diagnostics. Basic concepts including detection mechanisms and trends in their fields will be covered in this review.

WiMAX 응용을 위한 결합 공진기 기반의 PCB 내장형 평형신호 듀플렉서의 설계 (Design of PCB Embedded Balanced-to-unbalanced WiMax Duplexer Using Coupled LC Resonators)

  • 박주용;박종철;박재영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1587_1588
    • /
    • 2009
  • In this paper, PCB embedded balanced-to-unbalamced duplexer using coupled LC resonator was introduced for low cost dualband WiMax front-end-module application. In order to obtain the function of bandpass filter and balun transformer, proposed duplexer was configured by using magnetically coupled LC resonator. Out-of-band suppression was enhanced by applying two m-Derived transform circuits to obtain transmission zeros at 2GHz and 4.8GHz. In order to reduce the size of embedded duplexer, BaSrTiO3 (BST) composite high Dk RCC film was applied to improve the capacitance density. This high Dk film provided the capacitance density of 12.2 pF/mm2. The simulation results shows that fabricated duplexer had an insertion loss of 2.9dB and 5.5dB and return loss of 15dB and 16dB for 2.5GHz~2.6GHz and 3.5GHz~3.6GHz, respectively. The maximum magnitude and phase imbalance were 0.01dB and 0.17dB, and 1degree and 2degree in its passband, respectively. The out-of-band suppression was observed approximately 29dB and 40dB below 1.9GHz and over 4.5GHz, respectively. It has a volume of 6 mm $\times$ 7 mm $\times$ 0.7 mm (height).

  • PDF

다결정 3C-SiC 마이크로 공진기의 특성 (Characteristics of polycrystalline 3C-SiC micro resonator)

  • 이태원;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.69-70
    • /
    • 2008
  • Micro resonators have been actively investigated for bio/chemical sensors and RF M/NEMS devices. Among various materials, SiC is a very promising material for micro/nano resonators since the ratio of its Young's modulus, E, to mass density, $\rho$, is significantly higher than other semiconductor materials, such as, Si and GaAs. Polycrystalline 3C-SiC cantilever with different lengths were fabricated using a surface micromachining technique. Polycrystalline 3C-SiC micro resonators were actuated by piezoelectric element and its fundamental resonance was measured by a laser vibrometer in air and vacuum at room temperature, respectively. For the cantilever with $100{\mu}m$ length, $10{\mu}m$width and $1.3{\mu}m$ thickness, the fundamental frequency appeared at 147.2 kHz.

  • PDF

Highly-Dispersive Guided Modes of Two-Dimensional Photonic Crystal Waveguides

  • Kim, Guk-Hyun;Lee, Yong-Hee
    • Journal of the Optical Society of Korea
    • /
    • 제7권1호
    • /
    • pp.38-41
    • /
    • 2003
  • We present an analysis of highly-dispersive guided modes of two-dimensional photonic crystal waveguides. By the plane ave expansion method, band structures and mode profiles of two-dimensional photonic crystal waveguides are obtained. It is found that guided modes have very small group velocities and very large group velocity dispersions in the region near the f-point and in the region near the Brillouin zone edge. Especially, the group velocity dispersions are found to be millions of times larger than that of a conventional optical fiber. The contributions of the transverse resonance formed by two photonic band gap reflectors and the standing wave mode formed by periodic structures are discussed. We conclude that the highly-dispersive characteristics originate from the resonator-like aspect of the photonic crystal waveguide.