• 제목/요약/키워드: Nano-processing

검색결과 563건 처리시간 0.031초

Precipitated Calcium Carbonate Synthesis by Simultaneous Injection to Produce Nano Whisker Aragonite

  • Ramakrishna, Chilakala;Thenepalli, Thriveni;Huh, Jae-Hoon;Ahn, Ji Whan
    • 한국세라믹학회지
    • /
    • 제53권2호
    • /
    • pp.222-226
    • /
    • 2016
  • The synthesis of pure calcium carbonate nanocrystals was achieved using a simultaneous injection method to produce nano particles of uniform size. These were characterized using scanning electron microscopy and powder X-ray diffraction. The nano particles were needle-shaped aragonite polymorphs, approximately 100-200 nm in length. The aragonite polymorph of calcium carbonate was prepared using aqueous solutions of $CaCl_2$ and $Na_2CO_3$, which were injected simultaneously into double distilled water at $50^{\circ}C$ and then allowed to react for 1.5 h. The resulting whisker-type nano aragonite with high aspect ratio (30) is biocompatible and potentially suitable for applications in light weight plastics, as well as in the medical, pharmaceutical, cosmetic and paint industries.

분말 ECAP 공정 시 치밀화의 유한요소해석 (Finite Element Analysis of Densification Behavior during Equal Channel Angular Pressing Process of Powders)

  • 윤승채;팜쾅;천병선;이홍로;김형섭
    • 한국분말재료학회지
    • /
    • 제13권6호
    • /
    • pp.415-420
    • /
    • 2006
  • Nanostructured metallic materials are synthesized by bottom-up processing which starts with powders for assembling bulk materials or top-down processing starting with a bulk solid. A representative bottom-up and top-down paths for bulk nanostructured/ultrafine grained metallic materials are powder consolidation and severe plastic deformation (SPD) methods, respectively. In this study, the bottom-up powder and top-down SPD approaches were combined in order to achieve both full density and grain refinement without grain growth, which were considered as a bottle neck of the bottom-up method using conventional powder metallurgy of compaction and sintering. For the powder consolidation, equal channel angular pressing (ECAP), one of the most promising method in SPD, was used. The ECAP processing associated with stress developments was investigated. ECAP for powder consolidation were numerically analyzed using the finite element method (FEM) in conjunction with pressure and shear stress.

패턴드 미디어를 위한 나노 사출 성형 공정에 관한 연구 (Replication of Patterned Media Using Nano-injection Molding Process)

  • 이남석;최용;강신일
    • 소성∙가공
    • /
    • 제14권7호
    • /
    • pp.624-627
    • /
    • 2005
  • In this paper, we investigated the possibility of replicating patterned media by nano-injection molding process with a metallic nano-stamper. The original nano-master was fabricated by I-beam lithography and ICP etching process. The metallic nano-stamper was fabricated using a nanoimprint lithography and nano-electroforming process. Finally, the nano-patterned substrate was replicated using a nano-injection molding process without additional etching process. The replicated patterns using nano-injection molding process were as small as 50nm in diameter, 150nm in pitch, and 50nm in depth.

UV 나노 엠보싱 공정을 이용한 고종횡비 고분자 나노 섬모 어레이 제작 (Manufacture of High-Aspect-Ratio Polymer Nano-Hair Arrays by UV Nano Embossing Process)

  • 김동성;이현섭;이정현;이건홍;권태헌
    • 대한기계학회논문집A
    • /
    • 제30권7호
    • /
    • pp.773-778
    • /
    • 2006
  • High-aspect-ratio nano-hair or nano-pillar arrays have great potential in a variety of applications. In this study, we present a simple and cost-effective replication method of high-aspect-ratio polymer nano-hair arrays. Highly ordered nano-porous AAO (anodic aluminum oxide) template was utilized as a reusable nano-mold insert. The AAO nano-mold insert fabricated by the two-step anodization process in this study had close- packed straight nano-pores, which enabled us to replicate densely arranged nano-hairs. The diameter, depth and pore spacing of the nano-pores in the fabricated AAO nano-mold insert were about 200nm, $1{\mu}m$ and 450nm, respectively. For the replication of polymer nano-hair arrays, a UV nano embossing process was applied as a mass production method. The UV nano embossing machine was developed by our group for the purpose of replicating nano-structures by means of non-transparent nano-mold inserts. Densely arranged high-aspect-ratio nano-hair arrays have been successfully manufactured by means of the UV nano embossing process with the AAO nano-mold insert under the optimum processing condition.

금속 나노 스탬퍼 점착방지막으로서의 자기조립 단분자막 특성 연구 (Study on Properties of Self-Assembled Monolayer as Anti-adhesion Layer on Metallic Nano Stamper)

  • 최성우;강신일
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.367-370
    • /
    • 2003
  • In this study, application of SAM (self-assembled monolayer) to nano replication process as an anti-adhesion layer was presented to reduce the surface energy between the nano mold and the replicated polymeric nano patterns. The electron beam lithography was used for master nano patterns and the electorforming process was used to fabricate the nickel nano stamper. Alkanethiol SAM as an anti-adhesion layer was deposited on metallic nano stamper using solution deposition method. To analyze wettability and adhesion force of SAM, contact angle and LFM (Lateral Force Microscopy) were measured at the actual processing temperature and pressure for the case of nano compression molding and at the actual UV dose for the case of nano UV molding. It was found that the surface energy due to SAM deposition on the nickel nano stamper markedly decreased and the quality of SAM on the nickel stamper maintained under the actual molding environments.

  • PDF

N2 plasma treatment of pigments with minute particle sizes to improve their dispersion properties in deionized water

  • Zhang, Jingjing;Park, Yeong Min;Tan, Xing Yan;Bae, Mun Ki;Kim, Dong Jun;Jang, Tae Hwan;Kim, Min Su;Lee, Seung Whan;Kim, Tae Gyu
    • Journal of Ceramic Processing Research
    • /
    • 제20권6호
    • /
    • pp.589-596
    • /
    • 2019
  • Pigments with minute particle sizes, such as carbon black (CB) and pigment red 48:2 (P.R.48:2), are the most important types of pigment and have been widely used in many industrial applications. However, minute particles have large surface areas, high oil absorption and low surface energy. They therefore tend to be repellent to the vehicle and lose stability, resulting in significant increases in viscosity or reaggregation in the vehicle. Therefore, finding the best way to improve the dispersion properties of minute particle size pigments presents a major technical challenge. In this study, minute particle types of CB and P.R.48:2 were treated with nitrogen gas plasma generated via radio frequency-plasma enhanced chemical vapor deposition (RF-PECVD) to increase the dispersion properties of minute particles in deionized (DI) water. The morphologies and particle sizes of untreated and plasma treated particles were evaluated using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The average distributions of particle size were measured using a laser particle sizer. Fourier transform infrared spectroscopy was carried out on the samples to identify changes in molecular interactions during plasma processing. The results of our analysis indicate that N2 plasma treatment is an effective method for improving the dispersibility of minute particles of pigment in DI water.

양극산화 알루미늄막을 이용한 나노패턴 성형용 금형제작에 대한 연구 (A Study on the Fabrication of Nano-Pattern Mold Using Anodic Aluminum Oxide Membrane)

  • 오정길;김종선;강정진;김종덕;윤경환;황철진
    • 소성∙가공
    • /
    • 제19권2호
    • /
    • pp.73-78
    • /
    • 2010
  • Recently, many researches on the development of super-hydrophobic surface have been concentrated on the fabrication of nano-patterned products. Nano-patterned mold is a key to replicate nano-patterned products by mass production process such as injection molding and UV molding. The present paper proposes the new fabricating method of nano-patterned mold at low cost. The nano-patterned mold was fabricated by electroforming the anodic aluminum oxide membrane filled with UV curable resin in nano-hole by capillary phenomenon. As a result, the final mold with nano-patterns which have the holes with the diameter of 100~200 nm was fabricated. Furthermore, the UV-molded products with clear nano- patterns which have the pillars with the diameter of 100~200nm were achieved.

양극산화공정을 이용한 반사방지 성형용 나노 마스터 개발 (Fabrication of Nano Master with Anti-reflective Surface Using Aluminum Anodizing Process)

  • 신홍규;박용민;서영호;김병희
    • 한국생산제조학회지
    • /
    • 제18권6호
    • /
    • pp.697-701
    • /
    • 2009
  • A simple method for the fabrication of porous nano-master for the anti-reflection effect on the transparent substrates is presented. In the conventional fabrication methods for antireflective surface, coating method using materials with low refractive index has usually been used. However, it is required to have a high cost and long processing time for mass production. In this paper, we developed a porous nano-master with anti-reflective surface for the molding stamper of the injection mold, hot embossing and UV imprinting by using the aluminum anodizing process. Through two-step anodizing and etching processes, a porous nano-master with anti-reflective surface was fabricated at the large area. Pattern size Pore diameter and inter-pore distance are about 130nm and 200nm, respectively. In order to replicate anti-reflective structure, hot embossing process was performed by varying the processing parameters such as temperature, pressure and embossing time etc. Finally, antireflective surface can be successfully obtained after etching process to remove selectively silicon layer of AAO master.

  • PDF