• Title/Summary/Keyword: Nano-positioning stage

Search Result 32, Processing Time 0.025 seconds

Design of Robust Optimal Controller for Nano Stage using Sliding-mode Control (나노 스테이지에 대한 슬라이딩-모드 제어 기반의 강인 최적 제어기 설계)

  • Choi, In-Sung;Choi, Seung-Ok;You, Kwan-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.101-103
    • /
    • 2007
  • In this paper. we design a robust optimal controller for ultra-precision positioning system. Generally, it is hard to control the nanometric scale positioning system because of the parameter uncertainties and external disturbances. To solve this problem. we suggest a control algorithm based on the modified sliding-mode control and the LQ control in an augmented system. The augmented system is composed of additional state variables: state estimates and control input in the nominal system. Through comparison with LQ optimal control, it is verified that the proposed control algorithm is more robust to the unexpected parameter variations and external noises.

  • PDF

Optimal Design of Controller for Ultra-Precision Plane X-Y Stage (초정밀 평면 X-Y 스테이지의 최적제어기 설계)

  • Kwak, L. K.;kim, J. Y.;Yang, D. J.;Ko, M. S.;You, S.;Kim, K. T.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.342-347
    • /
    • 2002
  • After the industrial revolution in 20 century, the world are preparing for new revolution that is society with knowledge for a basis such as IT(Information Technology), NT(Nano Technology) and BT(Bio Technology). Recently, NT is applied to various fields that are composed of science, industry, media and semiconductor-micro technology. It has need of IT that is ultra-precision positioning technology with strokes of many hundreds mm and maintenance of nm precision in fields of ultra micro process, ultra precision measurement, photo communication part and photo magnetic memory. Performance test of servo control system that is used ultra-precision positioning system with single plane X-Y stage is performed by simulation with Matlab. Analyzed for previous control algorithm and adapted for modern control theory, dual servo algorithm is developed by minimum order observer, and stability and priority on controller are secured. Through the simulation and experiments on ultra precision positioning, stability and priority on ultra-precision positioning system with single plane X-Y stage and control algorithm are secured by using Matlab with Simulink and ControlDesk made in dSPACE

  • PDF

Analysis of Multiple Displacement Magnification Mechanism in Ultraprecision Nano Stage (초정밀 나노 스테이지에서의 다중 변위 확대 기구 해석)

  • Min K.S.;Choi W.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1273-1276
    • /
    • 2005
  • A displacement magnification mechanism is usually employed in a nano-positioning stage to achieve a large stage motion. A lever mechanism is the most widely used displacement magnifying mechanism. For more large stage motion, double or multiple lever mechanisms can be used. In this case, a more accurate analysis model is needed. This study proposes a more reasonable analysis model for a multiple lever mechanism based on the single lever mechanism model. This paper describes that the high equivalent stiffness of the lever is the most important factor reducing the magnification ratio of the lever mechanism through increasing the deflection of the link and including the axial displacement of the pivot.

  • PDF

Nano Position Control of Plane X-Y Stage Using Minimum Order Observer (최소차원 관측기를 이용한 평면 X-Y 스테이지의 나노 위치제어)

  • 김재열;윤성운;곽이구;안재신;한재호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.180-185
    • /
    • 2003
  • Performance test of servo control system that is used ultra-precision positioning system with single plane X-Y stage is performed by simulation with Matlab. Analyzed for previous control algorithm and adapted for modem control theory, dual servo algorithm is developed by minimum order observer, and stability priority on controller are secured. Through the simulation and experiments on ultra precision positioning, stability and priority on ultra-precision positioning system with single plane X-Y stage and control algorithm are secured by using Matlab with Simulink and ControlDesk made in dSPACE

  • PDF

A Study on the Design and Control of a Ultra-precision Stage (초정밀 스테이지 설계 및 제어에 관한 연구)

  • Park, Jong-Sung;Jeong, Kyu-Won
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.3
    • /
    • pp.111-119
    • /
    • 2006
  • The ultra-precision stage is demanded for some industrial fields such as semiconductor lithography, ultra-precision machining, and fabrication of nano structure. A new stage was developed for those applications in order to obtain nano meter resolution. This stage consists of symmetric double parallelogram mechanism using flexure hinges. The mechanical properties such as strength of the flexures and deformations along the applied force were analyzed using FEM. The stage is actuated by a piezoelectric actuator and its movement was measured by a ultra-precision linear encoder. In order to improve positioning performance, a PID controller was designed based on the identified second order transfer function. Experimental results showed that this stage could be positioned within below 5 nm resolution irrespective of hysteresis and creep by the controller.

An Intelligent Nano-positioning Control System Driven by an Ultrasonic Motor

  • Fan, Kuang-Chao;Lai, Zi-Fa
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.40-45
    • /
    • 2008
  • This paper presents a linear positioning system and its control algorithm design with nano accuracy/resolution. The basic linear stage structure is driven by an ultrasonic motor and its displacement feedback is detected by a LDGI (Laser Diffraction Grating Interferometer), which can achieve nanometer resolution. Due to the friction driving property of the ultrasonic motor, the driving situation differs in various ranges along the travel. Experiments have been carried out in order to observe and realize the phenomena of the three main driving modes: AC mode (for mm motion), Gate mode (for ${\mu}m$ motion), and DC mode (for nm motion). A proposed FCMAC (Fuzzy Cerebella Model Articulation Controller) control algorithm is implemented for manipulating and predicting the velocity variation during the motion of each mode respectively. The PCbased integral positioning system is built up with a NI DAQ Device by a BCB (Borland $C^{++}$ Builder) program to accomplish the purpose of an intelligent nanopositioning control.

Analysis and Improvement of Dynamics Characteristic of 3-axis Nano Stage (3 축 나노 스테이지 동특성 해석 및 개선)

  • Kim, Choong;Lee, Kang-Nyung;Lee, Dong-Ju;Lee, Moon-Gu;Choi, Hyoung-Gil;Lee, Suk-Won;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.555-558
    • /
    • 2005
  • The precision positioning system requires robust design to obtain enough bandwidth. Therefore, The sub-resonance occurred by the disaccord of force center and mass center should be oppressed. And it is necessary to move the flexible mode to a higher frequency. In this paper, the 3-axis nano stage was proposed and dynamic characteristics was improved by design of experiments (DOE).

  • PDF

Development of Multi-Axis Ultra Precision Stage for Optical Alignment (광소자 정렬용 초정밀 다축 스테이지 개발)

  • 정상화;이경형;김광호;차경래;김현욱;최석봉;박준호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.213-218
    • /
    • 2004
  • As optical fiber communication grows, the fiber alignment become the focus of industrial attention. This greatly influence the overall production rates for the opto-electric products. We proposed multi-axis nano positioning stage for optical fiber alignment. This device has 3 DOF translation and sub nanometer resolution. This nano stage consist of 3 PZT-driven flexure stages which are stacked parallel. The displacement of it is measured with capacitance gauge and is controlled by computer-embedded main controller. The design process of flexure stage using FEM is proposed and the performance evaluation of this system is verified with experiments.

  • PDF

Precision Position Controller Design for a 6-DOF Stage with Piezoelectric Actuators and Lever Linkages Based on Nonlinearity Estimation (압전 구동기와 레버 링키지를 이용한 6 자유도 스테이지의 비선형성 평가에 기초한 정밀 위치 제어기의 설계)

  • Moon, Jun-Hee;Lee, Bong-Gu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1045-1053
    • /
    • 2009
  • Precision stages for 6-DOF positioning, actuated by PZT stacks, which are fed back by gap sensors and guided by flexure hinges, have enlarged their application territory in micro/nano manufacturing and measurement area. The precision stages inherently have such limitations as the nonlinearity between input and output in piezoelectric stacks, feedback signal noise in precision capacitive gap sensors and low material damping in precision kinematic linkages of mechanical flexures. To surmount these limitations, the precision stage is modeled with physics-based variables, which are identified by transient response correspondence, and a gain margin calculation algorithm using the Prandtl-Ishlinskii model and describing function is newly developed to assess system performance more precisely than linear controller design schemes. Based on such analyses, a precision positioning controller is designed. Excellent positioning accuracy with rapid settlement accomplished by the controller is shown in step responses of the closed-loop system.