• 제목/요약/키워드: Nano-material

검색결과 2,414건 처리시간 0.028초

건식법으로 1-Octanethiol 코팅한 Cu 나노 분말 잉크의 잉크젯 인쇄 기술 적용 (Inkjet Printing Using Cu Nano Powder Ink Coated with 1-Octanethiol in Dry Method)

  • 허재학;박신영;;이선영
    • 한국분말재료학회지
    • /
    • 제18권4호
    • /
    • pp.322-326
    • /
    • 2011
  • Inkjet printing was successfully done using Cu nano powder ink after these Cu nano powders were dry-coated with 1-octanethiol for oxidation prevention. 1-octanethiol, which is Self-Assembled Multi-layers (SAMs), was coated approximately 10-nm thick on the surface of Cu nano powders. 1-Octanol, which has the same chain length as that for 1-octanethiol, was used as a solvent to make the ink for inkjet printing. As a result, the fabricated ink was dispersed for about 4 weeks, and after printing and heat treatment at $350^{\circ}C$ for 4 hours, the resistivity for the printed pattern was measured to be $1.15{\times}10^{-5}{\Omega}{\cdot}cm$.

HVDC용 나노복합 절연재료의 DC절연파괴 분석 (Analysis of DC dielectric breakdown strength of Nano-composite insulation material for HVDC Cable)

  • 조성훈;정의환;이한주;임기조;정수현
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.104-104
    • /
    • 2010
  • With the advent of nano-particle fillers in insulating materials, the insulating materials of superior quality have come to fore. In the recent past, nanocomposite LDPE/XLPE (Low Density Polyethylene/Cross Linked Polyethylene) power cable dielectrics have been synthesized. A preliminary evaluation of these new class of materials seem to show that, addition of small amounts of sub-micron inorganic fillers improved the dielectric properties of the composite, in particular, the volume resistivity, and the DC breakdown strength. The thermal behaviour, for example, the stability of composites against decomposition and ensuing electrical failure, do not seem to have been addressed. In a conventional XLPE insulated cable, the average thermal breakdown strength and maximum temperature at the onset of breakdown were seen to be markedly lower than the corresponding intrinsic breakdown strength and decomposition temperature. In this page, analysis of DC Breakdown of nano-composite insulating material for HVDC Cable is introduced.

  • PDF

MgO를 첨가한 에폭시 나노 컴퍼지트의 절연파괴강도 온도의존성 (Temperature Dependence on dielectric breakdown strength of Epoxy Nano-Composites depending on MgO)

  • 정인범;한현석;이영상;조경순;신종열;홍진웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.48-48
    • /
    • 2010
  • In this paper, we have investigated temperature dependence of dielectric breakdown voltage at epoxy with added nano-filler(MgO), which is used as a filler of epoxy additives for HVDC(high voltage direct current) submarine cable insulating material with high thermal conductivity and restraining tree to improve electrical properties of epoxy resin in high temperature region. In order to find dispersion of the specimen, the cross sectional area of nano-composite material is observed by using the SEM(Scanning Electron Microscope) and it is conformed that each specimen is evenly distributed without the cohesion. As a result, it is confirmed that the strength of breakdown of all specimen at 50 [$^{\circ}C$] decreased more than that of the dielectric breakdown strength at room temperature. When temperature increases from 50 [$^{\circ}C$] to 100 [$^{\circ}C$], we have confirmed that breakdown strength of virgin specimen decreases, but specimens with added MgO show constant dielectric breakdown strength.

  • PDF

전자빔 용접된 Cu / STS 304강의 미세조직에 관한 연구 (Microstructure of Electron Beam Welded Cu / STS 304 Dissimilar Materials)

  • 박경태;김인호;백준호;천병선
    • Journal of Welding and Joining
    • /
    • 제28권2호
    • /
    • pp.47-53
    • /
    • 2010
  • According to the research report for the recent a few years, the dissimilar welding of Cu and STS 304 alloy have been presented that a weldability is very poor. This article present a study on Lap joint by Electron beam welding dissimilar materials. The weld metals was constituted between pure copper and STS 304 steel. The experiment was performed with 125mA welding current, 520mA focusing current. The Vacuum condition of chamber is 5${\times}$10-5torr and welding speed is 300mm/min. Showing the bead shape of weld metal, the thickness of the stainless 304 using as the protect materials is 3mm and the thickness of a copper is 15mm. The analysis about the microstructure were carried out in which it was observed with SEM. The results showed that complex heterogeneous fusion zone microstructure characterized both by rapid cooling and mixing of the molten metal, however the liquation crack was formated in the fusion line.

마그네슘의 등통로각압축 공정 시 변형 및 파괴 거동에 대한 유한요소해석 (Analysis for Deformation and Fracture Behavior of Magnesium during Equal Channel Angular Pressing by the Finite Element Method)

  • 윤승채;팜쾅;김형섭
    • 대한금속재료학회지
    • /
    • 제46권3호
    • /
    • pp.144-149
    • /
    • 2008
  • Equal channel angular pressing (ECAP) has been studied intensively over the decade as a typical top-down process to produce ultrafine/nano structured materials. ECAP has successfully been applied for a processing method of severe plastic deformation to achieve grain refinement of magnesium and to enhance its low ductility. However, difficult-to-work materials such as magnesium and titanium alloys were susceptible to shear localization during ECAP, leading to surface cracking. The front pressure, developed by Australian researchers, can impose hydrostatic pressure and increase the strain level in the material, preventing the surface defect on workpiece. In the present study, we investigated the deformation and fracture behavior of pure magnesium using experimental and numerical methods. The finite element method with different ductile fracture models was employed to simulate plastic deformation and fracture behavior of the workpiece.

Yttrium-doped and Conductive Polymer-Coated High Nickel Layered Cathode Material with Enhanced Structural Stability

  • Shin, Ji-Woong;Lee, Seon-Jin;Nam, Yun-Chae;Son, Jong-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권2호
    • /
    • pp.272-278
    • /
    • 2021
  • In this study, high nickel layered LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium-ion batteries were modified by yttrium doping and poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) coating. The effects of yttrium doping and PEDOT:PSS coating on the structural and electrochemical properties of the LiNi0.8Co0.1Mn0.1O2 cathode material were investigated and compared. The substitution of nickel with an electrochemically inert yttrium was confirmed to be successful in stabilizing the layered structure framework. Moreover, coating the surfaces of the LiNi0.8Co0.1Mn0.1O2 particles with a conductive polymer, PEDOT:PSS, improved the capacity retention, thermal stability, and impedance of the cathode material by increasing its ionic and electric conductivities.

발광 다이오드(LED)를 이용한 대형 태양전지 판넬 평가용 인공 태양광 구성 (Fabrication of LED Solar Simulator for the Evaluation of Large Solar Panel)

  • 정광교;김주현;류재준;이석환;고영수;허산;문성득;이승현;김동현;장미나;김정미;구지은;장지호
    • 한국전기전자재료학회논문지
    • /
    • 제25권9호
    • /
    • pp.755-758
    • /
    • 2012
  • We developed a new solar simulator to evaluate a large-scale solar cell using seven kinds of LEDs (Infrared, Red, Yellow, Green, Blue, White and Ultra Violet LED). LED solar simulator can be displaced the existing solar simulator which has several demerits such as high power consumption and short lifetime. We have tried to fabricate LED solar simulator which fulfills the spectrum for AM 1.5G condition, and to verify the feasibility of LED solar simulator.

생체 청각기구를 모사한 폴리머 박막의 주파수 분리 특성 평가 (Characterization of Frequency Separation in Polymer Membranes Mimicking a Human Auditory System)

  • 송원준;배성재;김완두
    • 비파괴검사학회지
    • /
    • 제31권5호
    • /
    • pp.516-521
    • /
    • 2011
  • 청각기관인 달팽이관에 존재하는 기저막의 중요한 기능은 등자뼈로부터 전달되는 진동에너지를 주파수별로 분리하는 것이다. 본 연구에서는 인간 기저막의 형상을 모사하여 설계한 매크로 스케일의 폴리머 박막을 사용하여 주파수 분리 특성을 연구하였다. 각각의 폴리머 박막상의 위치에 따른 변위 분포는 LDV (laser Doppler vibrometer) 스캐닝 기법을 이용하여 측정하였고, 측정된 결과는 후처리 과정을 거쳐 주파수별로 분리하였다. 인가된 주파수에 따른 최대 변위 발생 위치를 추출하여 각 박막에 대한 주파수-최대 변위 발생 위치 관계를 도식화하였다. 아울러 박막 두께 및 물성치가 주파수-최대 변위 발생 위치 관계에 미치는 영향에 대해서도 논하였다.

CS졸을 이용한 Poly(epoxy-imide)-나노 Silica 하이브리드 필름의 합성과 유전특성 (Synthesis of Poly(epoxy-imide)-Nano Silica Hybrid Film via CS Sol-gel Process and Their Dielectric Properties)

  • 한세원;한동희;강동필;강영택
    • 한국전기전자재료학회논문지
    • /
    • 제20권1호
    • /
    • pp.35-40
    • /
    • 2007
  • The new PEI(poly(epoxy-imide))-nano Silica film has been synthesized via in situ CS sol process, and the chemical bonding and microstructure of nano silica dispersed in resin were examined by FT-IR, TAG and SEM. The dielectric properties of these hybrid films over a given temperature and frequency ranges have been studied in a point of view of stable chemical bonding of nano Silica filler. The results from IR spectra and SEM photograph indicated that PEI-Silica hybrid film prepared with nano CS sol process has been synthesized in uniform and chemical bonding. The decrease property of dielectric constant with CS content, tangent loss consistent of given frequency and temperature has been explained in terms of the chain movement of polymer through chemical bonging and size effect of nano silica. The new PEI-CS sol hybrid film with such stable chemical and dielectric properties was expected to be used as a high functional coating application in ET, IT and electric power products.