• Title/Summary/Keyword: Nano-hardness

Search Result 427, Processing Time 0.034 seconds

Evaluation of Physicochemical Properties of Jeungpyun Prepared with Membrane-filtered Tofu Whey Concentrates

  • Joo, Sin-Youn;Choi, Min-Hee;Jung, Jin-Young;Kim, Woo-Jung;Chung, Hai-Jung
    • Food Quality and Culture
    • /
    • v.2 no.1
    • /
    • pp.43-47
    • /
    • 2008
  • This study examined the quality characteristics of Jeungpyun prepared with different additions of nano-filtered (NF) tofu whey concentrates. The initial pH values of the Jeungpyun batters ranged from 5.64 to 5.78, and decreased to 4.77-4.98 after 4 hours of fermentation at $35^{\circ}C$. The volume and specific volume values of the control Jeungpyun were lower than those of Jeungpyun samples prepared with 1%, 2%, and 3% NF powder. The color of the Jeungpyun became increasingly greenish-yellow as the NF powder level increased. Hardness and brittleness decreased with increasing NF powder content, while cohesiveness and springiness were not significantly different. Sensory evaluations revealed that as the level of NF powder increased, takju smell and sourness increased, but no significant differences were observed for sweetness and moistness between the control and NF powder groups. In terms of overall acceptability, the results revealed that Jeungpyun can be prepared with up to 1% NF powder in place of rice powder and be deemed as acceptable as a control Jeungpyun product.

  • PDF

Improvement of Corrosion Resistance and Nano-hardness of Ti-Al-N Deposit Formed by Arc Ion Plating (아크 이온 증착된 TiAlN 도포층의 내식성과 나노 경도 개선)

  • Gang, Bo-Gyeong;Choe, Yong;Gwon, Sik-Cheol;Zang, Shi-Hong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.213-213
    • /
    • 2014
  • $300^{\circ}C$$500^{\circ}C$에서 아크 이온 증착된 도포층의 조성은 각각 Fe : Al : Ti : Si : N = 1.31 : 36.52 : 31.31 : 0.48 : 30.38 [wt.%]와 Fe : Cr : Al : Ti : Si : N = 1.24 : 0.56 : 36.82 : 32.72 : 0.59 : 28.07 [wt.%] 이었다. 0.1N $H_2SO_4$ 수용액과 인공해수 (ASTM D1141-98) 분위기에서 $300^{\circ}C$, $500^{\circ}C$에서 증착된 도포층의 부식전압과 부식속도는 각각 $-0.2787V_{SHE}$, $0.002A/cm^2$, $-2.764V_{SHE}$, $0.002A/cm^2$$-0.2799V_{SHE}$, $0.002A/cm^2$, $-0.0394V_{SHE}$, $0.002A/cm^2$이었다. 나노 경도값은 각각 23.6, 25.8 GPa 이었다. 이는 각각 2208.2, $2434.2H_V$에 해당되었다.

  • PDF

Electron Beam Curing of Hard Coating Resin for In-mold Decoration Foils (In-mold Decoration 포일에 사용되는 경질 코팅 수지의 전자빔 경화)

  • Sim, Hyun-Seog;Yun, Deok-Woo;Kim, Geon-Seok;Lee, Kwang-Hee;Lee, Byung-Cheol
    • Polymer(Korea)
    • /
    • v.35 no.2
    • /
    • pp.141-145
    • /
    • 2011
  • The electron beam (EB) induced curing of a typical resin designed for the hard coating layer of in-mold decoration foils was investigated. The samples were irradiated with different doses of EB and the curing reaction was monitored by Fourier transform infrared (FTIR) spectroscopy. The change in coating properties such as surface hardness and anti-abrasion property was studied as a function of increasing dose. The effect of the addition of nano-particles on the improvement of coating properties was also examined. It was expected that the experimental results could be used for the commercial exploitation of the EB curing system comparable to the ultraviolet (UV) curing system.

Synthesis and Sintering of Nanostructured Mg4Al2Ti9O25 by High-Frequency Induction Heating and Its Mechanical Properties (고주파 유도 가열에 의한 나노구조 Mg4Al2Ti9O25 합성 및 소결과 기계적 성질)

  • Kang, Hyun-Su;Doh, Jung-Mann;Yoon, Jin-Kook;Shon, In-Jin
    • Korean Journal of Materials Research
    • /
    • v.24 no.2
    • /
    • pp.67-72
    • /
    • 2014
  • Nanocrystalline materials have received much attention as advanced engineering materials with improved physical and mechanical properties, including high strength, high hardness, excellent ductility and toughness. In this study, nanopowders of $Al_2O_3$, MgO and $TiO_2$ were prepared as starting materials by high energy ball milling for the simultaneous synthesis and sintering of the nanostructured compound $Mg_4Al_2Ti_9O_{25}$ by high-frequency induction heating process. The highly dense nanostructured $Mg_4Al_2Ti_9O_{25}$ compound was produced within one minute by the simultaneous application of 80MPa pressure and induced current. The sintering behavior, grain size and mechanical properties of the $Mg_4Al_2Ti_9O_{25}$ compound were evaluated.

Improvement of Transmittance and Surface Integrity of Glass Mold for light-hardening polymer Using MR Polishing (HR polishing에 의한 광경화성수지 성형용 글래스 몰드의 투과율 및 표면품위 향상)

  • Lee, J.W.;Kim, D.W.;Cho, M.W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.78-83
    • /
    • 2009
  • In general, Light-hardening polymer was used UV nanoimprint technology. A light-hardening polymer was had the problem of poor hardness, durability. In order to overcome the problem of polymer, inter change optical glass. However glass is very manufacture and a lowering of standars transmittance. In order to glass recover was necessary polishing process. The process is magnetorheological fluids polishing. MR polishing has been developed as a new precision finishing technique to obtain a fine surface. Hence, Magnetorheological fluids has been used for micro polishing to get micro parts. This polishing process guarantees high polishing quality by controlling the fluid density electrically. The applied material in experiments is fused silica glass. Fused silica glass is widely used in the optical field because of high degree of purity. For MR polishing experiments, MR fluid was composed with DI-water, carbonyl iron and nano slurry ceria. The wheel speed and electric current were chosen as the variables for analyzing the characteristics of MR polishing process. Outstanding surface roughness of Ra=1.58nm was obtained on the fused silica glass specimen. And originally glass transmittance was recover on the fused silica glass.

  • PDF

Effects of Hydrocolloids on the Quality of Protein and Transglutaminase Added Gluten-free Rice Bread (단백질과 트란스글루타미나제 첨가 글루텐 프리 쌀빵의 품질에 대한 친수콜로이드의 효과)

  • Hwang, Sun Ok;Kim, Ji Myoung;Shin, Malshick
    • Korean journal of food and cookery science
    • /
    • v.33 no.2
    • /
    • pp.198-208
    • /
    • 2017
  • Purpose: To improve the quality of basic gluten-free rice bread composed of white rice flour, salt, sugar, yeast, skim milk powder, olive oil, and water, the effects of transglutaminase (TGase), whey protein (WP), propylene glycol alginate (PGA), and hydroxypropylmethylcelluose (HPMC) were investigated. Methods: TGase, WP, PGA, and HPMC were added to rice flour cumulatively. The pasting properties of rice flour blends as well as volume, shape, color value, textural properties and sensory evaluation of basic rice bread (RB1) RB1+TGase (RB2), RB1+TGase+WP (RB3), RB1+TGase+WP+PGA (RB4), and RB1+TGase+WP+PGA+HPMC (RB5) were compared. Results: Consistency of rice batter increased upon addition of TGase, WP and PGA, and RB3 and RB4 had higher specific volumes than others. PGA improved volume, crumb air cell uniformity, and resilience but lowered elasticity and moistness of RB. HPMC increased, hardness, moistness and softness, and slightly reduced volume. Conclusion: Therefore, it is suggested that hydrocolloids, PGA and HPMC may be necessary to improve volume, crumb structure, textural properties and overall eating quality of gluten-free rice bread.

The hardness property for the contents of hydrogen of DLC coating deposited by PECVD (PECVD를 이용하여 증착시킨 DLC 코팅의 수소함유량에 의한 경도 특성)

  • Kim, Jun-Hyeong;Mun, Gyeong-Il;Park, Jong-Wan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.141-141
    • /
    • 2011
  • DLC(Diamond Like Carbon) 박막은 높은 경도, 낮은 마찰계수, 내화학성 등의 우수한 트라이볼로지적 특성을 가지고 있기 때문에 다양한 산업분야에서 적용되고 있다. 이러한 DLC 박막은 합성기구나 구조의 관점에서 몇 가지 다른 이름으로 불려지기도 한다. 밀도와 경도가 높기 때문에 경질탄소(Hard Carbon)라고도 불려지며, 수소를 함유한 경우에는 수소함유 비정질 탄소(Hydrogenated Amorphous Carbon)이라는 이름이 사용되며, 고밀도 탄소(Dense Carbon) 또는 고밀도 탄화수소(Dense Hydrocarbon)라고 불리기도 한다. 이렇듯 DLC 박막은 합성방법에 따라 함유된 수소와 탄소의 결합구조의 차이가 있다. 수소 함유한 DLC 박막은 20~50%까지 수소를 함유하며, DLC막의 기계적, 광학적, 전기적 특성들이 수소함량과 밀접한 관계를 가지고 있는 것으로 알려져 있다. 그러나 함유된 수소가 $300^{\circ}C$ 이상의 온도에서는 쉽게 결합에서 이탈되면서 흑연화와 더불어 마찰마모시 코팅층의 파손이 발생한다고 보고되고 있고, 또한 수소량이 증가함에 따라 DLC 박막의 경도는 감소하게 되는데, 이는 수소에 의해 dangling bond가 Passivation되면 탄화수소의 3차원적인 Crosslinking은 그만큼 감소하게 되기 때문이라고 알려져 있다. 본 연구에서는 PECVD를 이용하여 여러 가지 공정에 따른 DLC 박막을 증착시켰으며, 수소함유량에 따른 DLC막의 구조와 그에 따른 경도 변화를 살펴보았다. FTIR(Furier Transform Infrared Spectroscopy)과 Raman Spectroscopy을 이용하여 DLC막의 수소의 결합상태를 관찰하였으며, Nano Indentation을 사용하여 미소경도를 측정하였고, FE-SEM을 이용하여 표면과 단면을 관찰하였다. 막의 두께 측정에는 ${\alpha}$-Step을 사용하였으며, Ball-on-Disk 타입의 Tribo-meter을 이용하여, 모재의 경도에 따른 마찰계수 변화를 관찰하였다.

  • PDF

The Application of DLC(diamond-like carbon) Film for Plastic Injection Mold by Hybrid Method of RF Sputtering and Ion Source (RF 스퍼터링과 이온소스 복합방식에 의한 플라스틱사출금형(SKD11)의 DLC막 응용)

  • Kim, Mi-Seon;Hong, Sung-Pill
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.4
    • /
    • pp.173-178
    • /
    • 2009
  • DLC film was synthesized on plastic injection mold(SKD11, $30\;mm\;{\times}\;19\;mm\;{\times}\;0.5\;mm$) and Si(100) wafer for 2 h at $130^{\circ}C$ under 6 mTorr using hybrid method of rf sputtering and ion source. The obtained film was analysed by Raman spectroscopy, AFM, TEM, Nano indenter and scratch tester, etc. The film was defined as an amorphous phase. In the Raman spectrum, broad peak of $sp^2$-bonded carbon attributed to graphite at $1550\;cm^{-1}$ were observed, and the ratio of ID($sp^3$ diamond intensity)/IG($sp^2$ graphite intensity) was approximately 0.54. The adhesion of DLC film was more than 80 N with scratch tester when $0.2\;{\mu}m$ thickness Cr was coated as interlayer. The micro-hardness was distributed at 35~37 GPa. The friction coefficient was 0.02~0.07, and surface roughness(Ra) was 0.34~1.64 nm. The lifetime of DLC coated plastic injection mold using as a connector part in computer was more than 2 times of non-coated mold.

Effect of Inductively Coupled Plasma on the Microstructure, Structure and Mechanical Properties of NbN Coatings (유도결합 플라즈마 파워가 NbN 코팅막의 미세구조, 결정구조 및 기계적 특성에 미치는 영향에 관한 연구)

  • Chun, Sung-Yong
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.5
    • /
    • pp.205-210
    • /
    • 2015
  • NbN coatings were prepared by ICP (inductively coupled plasma) assisted magnetron sputtering from a Nb metal target in $Ar+N_2$ atmosphere at various ICP powers. Effect of ICP on the microstructure, crystalline structure and mechanical properties of NbN coatings was investigated by field emission electron microscopy, X-ray diffraction, atomic force microscopy and nanoindentation measurements. The results show that ICP power has a significant influence on coating microstructure, structure and mechanical properties of NbN coatings. With the increasing of ICP power, coating microstructure evolves from the columnar structure of DC process to a highly dense one. Crystalline structure of NbN coatings were changed from cubic ${\delta}$-NbN to hexagonal ${\beta}-Nb_2N$ with increase of ICP power. The maximum nano hardness of 25.4 GPa with Ra roughness of 0.5 nm was obtained from the NbN coating sputtered at ICP power of 200 W.

Fabrication of Nanocrystalline Co-Al2O3 from Mechanically Synthesized Powders by Rapid Sintering (기계적으로 합성한 분말로부터 급속 소결에 의한 나노 구조의 Co-Al2O3 복합재료 제조)

  • Park, Na-Ra;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.12
    • /
    • pp.961-966
    • /
    • 2012
  • Nano-sized Co and $Al_2O_3$ powders were successfully synthesized from $3/4Co_3O_4$ and 2Al by high-energy ball milling. A dense nanocrystalline $2.25Co-Al_2O_3$ composite was consolidated from mechanically synthesized powders by the pulsed current activated sintering (PCAS) method within 2 min. Consolidation was accomplished under the combined effects of a pulsed current and mechanical pressure. A dense $2.25Co-Al_2O_3$ with relative density of up to 95% was produced under simultaneous application of a 80 MPa pressure and a pulsed current of 2800 A. The fracture toughness and hardness of the $2.25Co-Al_2O_3$ composite were $8MPa{\cdot}m^{1/2}$, $870kg/mm^2$, respectively.