Browse > Article
http://dx.doi.org/10.3740/MRSK.2014.24.2.67

Synthesis and Sintering of Nanostructured Mg4Al2Ti9O25 by High-Frequency Induction Heating and Its Mechanical Properties  

Kang, Hyun-Su (Division of Advanced Materials Engineering and Research Center of Advanced Materials Development, Engineering College, Chonbuk National University)
Doh, Jung-Mann (Interface Control Research Center, Korea Institute of Science and Technology)
Yoon, Jin-Kook (Interface Control Research Center, Korea Institute of Science and Technology)
Shon, In-Jin (Division of Advanced Materials Engineering and Research Center of Advanced Materials Development, Engineering College, Chonbuk National University)
Publication Information
Korean Journal of Materials Research / v.24, no.2, 2014 , pp. 67-72 More about this Journal
Abstract
Nanocrystalline materials have received much attention as advanced engineering materials with improved physical and mechanical properties, including high strength, high hardness, excellent ductility and toughness. In this study, nanopowders of $Al_2O_3$, MgO and $TiO_2$ were prepared as starting materials by high energy ball milling for the simultaneous synthesis and sintering of the nanostructured compound $Mg_4Al_2Ti_9O_{25}$ by high-frequency induction heating process. The highly dense nanostructured $Mg_4Al_2Ti_9O_{25}$ compound was produced within one minute by the simultaneous application of 80MPa pressure and induced current. The sintering behavior, grain size and mechanical properties of the $Mg_4Al_2Ti_9O_{25}$ compound were evaluated.
Keywords
compounds; nano-materials; sintering; mechanical properties;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 D. Hreniak and W. Strek, J. Alloys Comp. 341, 183 (2002).   DOI   ScienceOn
2 S. Jayanthi and T. R. N. Kutty, Mater. Lett., 62, 556 (2008).   DOI   ScienceOn
3 I. J. Shon, I. Y. Ko, H. S. Kang, K. T. Hong, J. M. Doh and J. K. Yoon, Met. Mater. Int., 18, 109 (2012).   DOI   ScienceOn
4 W. Kim, H. J. Wang, K. M. Roh, S. W. Cho, J. W. Lim and I. J. Shon, Kor. J. Met. Mater., 50, 310 (2012).
5 Karch, R. Birringer and H. Gleiter. Nature, 330, 556 (1987).   DOI   ScienceOn
6 A. M. George, J. Iniguuze and L. Bellaiche, Nature, 413, 54 (2001).   DOI   ScienceOn
7 Z Fang, JW Eason, Int. J. Refractory Met. Hard Mater., 13, 297 (1995).   DOI   ScienceOn
8 I. J. Shon, K. I. Na, J. M. Doh, H. K. Park and J. K. Yoon, Met. Mater. Int., 19, 99 (2013).   DOI   ScienceOn
9 G. W. Lee and I. J. Shon, Kor. J. Met. Mater., 51, 95 (2013).
10 I. J. Shon, G. W. Lee, J. M. Doh and J. K. Yoon, Electron. Mater. Lett., 9, 219 (2013).   DOI   ScienceOn
11 S. M. Kwak, H. K. Park and I. J. Shon, Kor. J. Met. Mater., 51, 314 (2013).
12 C. Suryanarayana, M. Grant Norton, X-ray Diffraction A Practical Approach, Plenum Press, New York (1998).
13 Z. Shen, M. Johnsson, Z. Zhao and M. Nygren, J. Am. Ceram. Soc., 85, 1921 (2002).   DOI   ScienceOn
14 J. R. Friedman, J. E. Garay. U. Anselmi-Tamburini and Z. A. Munir, Intermetallics. 12, 589 (2004).   DOI   ScienceOn
15 R. L. Coble, J. Appl. Phys., 41, 4798 (1970).   DOI
16 J. E. Garay, U. Anselmi-Tamburini, Z. A. Munir, S. C. Glade and P. Asoka- Kumar, Appl. Phys. Lett., 85, 573 (2004).   DOI   ScienceOn
17 Hwan-Cheol Kim, In-Jin Shon, In-Kyoon Jeong and In- Yong Ko, Met. Mater. Int., 12, 393 (2006).   DOI   ScienceOn
18 K. Niihara, R. Morena and D. P. H. Hasselman, J. Mater. Sci. Lett., 1, 12 (1982).
19 A. I. Y. Tok, L. H. Luo and F. Y. C. Boey, Mater. Sci. Eng. A. 383, 229 (2004).   DOI   ScienceOn
20 W. Kim, C. Y. Suh, K. M. Roh, J. W. Lim, H. B. Shim, H. K. Park and I. J. Shon, Kor. J. Met. Mater., 50, 861 (2012).
21 J. E. Garay, J. E. Garay. U. Anselmi-Tamburini and Z. A. Munir, Acta Mater., 51, 4487 (2003).   DOI   ScienceOn