Browse > Article
http://dx.doi.org/10.5695/JKISE.2015.48.5.205

Effect of Inductively Coupled Plasma on the Microstructure, Structure and Mechanical Properties of NbN Coatings  

Chun, Sung-Yong (Department of Advanced Materials Science and Engineering Mokpo National University)
Publication Information
Journal of the Korean institute of surface engineering / v.48, no.5, 2015 , pp. 205-210 More about this Journal
Abstract
NbN coatings were prepared by ICP (inductively coupled plasma) assisted magnetron sputtering from a Nb metal target in $Ar+N_2$ atmosphere at various ICP powers. Effect of ICP on the microstructure, crystalline structure and mechanical properties of NbN coatings was investigated by field emission electron microscopy, X-ray diffraction, atomic force microscopy and nanoindentation measurements. The results show that ICP power has a significant influence on coating microstructure, structure and mechanical properties of NbN coatings. With the increasing of ICP power, coating microstructure evolves from the columnar structure of DC process to a highly dense one. Crystalline structure of NbN coatings were changed from cubic ${\delta}$-NbN to hexagonal ${\beta}-Nb_2N$ with increase of ICP power. The maximum nano hardness of 25.4 GPa with Ra roughness of 0.5 nm was obtained from the NbN coating sputtered at ICP power of 200 W.
Keywords
Inductively Coupled Plasma; NbN coatings; Roughness; Structure; Morphology;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S. Y. Chun, S. C. Kim, J. Kor. Inst. Surf. Eng., 46 (2013) 261.
2 H. H. Jin, J. W. Kim, K. H. Kim, and S. Y. Yoon, J. Kor. Ceram. Soc., 42 (2005) 88.   DOI
3 U. Diebold, Surf. Sci. Rep., 48 (2003) 53.   DOI
4 M. Aliofkhazraei, N. Ali, Comprehensive Materials Processing, 7 (2014) 49.
5 A. S. H. Makhlouf, Nanocoatings and Ultra-Thin Films, Woodhead Publishing Limited, pp. 159-181 (2011).
6 M. Lilja, K. Welch, M. Astrand, H. Engqvist, M.Stromme, J. Biomedical Mater. Res. B., 100 [4] 1078 (2012).
7 Y. X. Leng, N. Huang, P. Yang, J. Y. Chen, H. Sun, J. Wang, G. J. Wan, X. B. Tian, R. K. Y. Fu, L. P. Wang, P. K. Chu," Surf. Coat. Technol., 156 (2002) 295.   DOI
8 Y. X. Leng , N. Huang , P. Yang , J. Y. Chen , H. Sun , J. Wang , G. J. Wan , Y. Leng , P. K. Chu, Thin Solid Films, 420-421 (2002) 408.   DOI
9 M. Bowes, J. W. Bradley, Surf. Coat. Technol., 250 (2014).
10 J. Musil, J. Vlcek, Surf. Coat. Technol., 112 (1999) 162.   DOI
11 B. M. Koo, S. J. Jung, Y. H. Han, J. J. Lee, J. H. Joo, J. Kor. Inst. Surf. Eng., 37 (2004) 146.
12 J. J. Lee, J. H. Joo, Surf. Coat. Technol., 169-170 (2003) 353.   DOI   ScienceOn
13 G. S. Fox-Rabinovich, G. C. Weatherly, A. I. Dodonov, A. I. Kovalev, L. S. Shuster, S. C. Veldhuis, G. K. Dosbaev, D. L. Wainstein, M. S. Migranov, Surf. Coat. Technol., 177-178 (2004) 800.   DOI
14 D. Cullity, S. R. Stock, Element of X-ray Diffraction, Prentice-Hall Inc., 3rd, pp. 167 (2001).
15 N. Maazi, N. Rouag, J. Cryst. Growth, 243 (2002) 361.   DOI   ScienceOn
16 A. Anders, "Atomic Scale Heating in Cathodic Arc Plasma Deposition,"Appl. Phys. Lett., 80 (2002) 1100.   DOI
17 M. Wen, Q.N. Meng, C.Q. Hu, T. An, Y.D. Su, W.X. Yu, W.T. Zheng, Surf. Coat. Technol., 203 (2009) 1702.   DOI
18 C. S. Sandu, M. Benkahoul, M. Parlinska-Wojtan, R. Sanjines, F. Levy, Surf. Coat. Technol., 200 (2006) 6544.   DOI
19 D. H. Seo, S. Y. Chun, J. Kor. Inst. Surf. Eng., 45 (2012) 123.   DOI   ScienceOn