• Title/Summary/Keyword: Nano-electromechanical (NEM)

Search Result 3, Processing Time 0.022 seconds

Fringe Field Effects on Transient Characteristics of Nano-Electromechanical (NEM) Nonvolatile Memory Cells

  • Han, Boram;Choi, Woo Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.609-614
    • /
    • 2014
  • The fringe field effects on the transient characteristics of nano-electromechanical (NEM) memory cells have been discussed by using an analytical model. The influence of fringe field becomes stronger as the size of a cell decreases. By using the proposed model, the dependency of NEM memory transient characteristics on cell parameters has been evaluated.

Mutually-Actuated-Nano-Electromechanical (MA-NEM) Memory Switches for Scalability Improvement

  • Lee, Ho Moon;Choi, Woo Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.2
    • /
    • pp.199-203
    • /
    • 2017
  • Mutually-actuated-nano-electromechanical (MA-NEM) memory switches are proposed for scalability improvement. While conventional NEM memory switches have fixed electrode lines, the proposed MA-NEM memory switches have mutually-actuated cantilever-like electrode lines. Thus, MA-NEM memory switches show smaller deformations of beams in switching. This unique feature of MA-NEM memory switches allows aggressive reduction of the beam length while maintaining nonvolatile property. Also, the scalability of MA-NEM memory switches is confirmed by using finite-element (FE) simulations. MA-NEM memory switches can be promising solutions for reconfigurable logic (RL) circuits.

A Study of Electromechanical Nanotube Memory Device using Molecular Dynamics

  • Lee Jun-Ha;Lee Hoong-Joo;Kwon Oh-Keun;Kang Jeong-Won
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2005.09a
    • /
    • pp.27-30
    • /
    • 2005
  • A nanoelectromechanical (NEM) switching device based on carbon nanotube (CNT) was investigated using atomistic simulations. The model schematics for a CNT based three-terminal NEM switching device fabrication were presented. for the CNT-based three-terminal NEM switch, the interactions between the CNT-lever and the drain electrode or the substrate were very important. When the electrostatic force applied to the CNT-lever was the critical point, the CNT-lever was rapidly bent because of the attractive foroe between the CNT-lever and the drain. The energy curves for the pull-in and the pull-out processes showed the hysteresis loop that was induced by the adhesion of the CNT on the copper, which was the interatomic interaction between the CNT and the copper.

  • PDF