• 제목/요약/키워드: Nano-composite materials

검색결과 586건 처리시간 0.026초

나노 준결정상으로 강화된 Ti계 벌크 비정질기지 복합재의 제조 및 기계적 특성 고찰 (Fabrication and Mechanical Properties of Nanoquasicrystalline Phase Reinforced Ti-based Bulk Metallic Glass Matrix Composites)

  • 박진만;임가람;김태응;손성우;김도향
    • 한국주조공학회지
    • /
    • 제28권6호
    • /
    • pp.261-267
    • /
    • 2008
  • In-situ quasicrystalline icosahedral (I) phase reinforced Ti-based bulk metallic glass (BMG) matrix composites have been successfully fabricated by using two distinct thermal histories for BMG forming alloy. The BMG composite containing micron-scale Iphase has been introduced by controlling cooling rate during solidification, whereas nano-scale I-phase reinforced BMG composite has been produced by partial crystallization of BMG. For mechanical properties, micron-scale I-phase distributed BMG composite exhibited lower strength and plasticity compared to the monolithic BMG. On the other hand, nano-scale icosahedral phase embedded BMG composite showed enhanced strength and plasticity. These improved mechanical properties were attributed to the multiplication of shear bands and blocking of the shear band propagation in terms of isolation and homogeneous distribution of nanosize icosahdral phases in the glassy matrix, followed by stabilizing the mechanical and deformation instabilities.

탄소 나노 재료 기반의 전기-화학적 구동기 (Nano Carbon Material Based Electrochemical Actuators)

  • 차주영;강인필
    • 한국정밀공학회지
    • /
    • 제28권11호
    • /
    • pp.1251-1258
    • /
    • 2011
  • With the help of nanoscale materials like carbon nanotube (CNT), there is the potential to develop new actuators that will provide higher work per cycle than previous actuator technologies, and generate much higher mechanical strength. In this study, the electrochemical actuation characteristics of nano carbon materials were experimentally studied to develop electrochemical actuators. The electrochemical actuators were composed of aqueous NaCl electrolyte and their actuating electrodes were made of multi-walled carbon nanotube (MWCNT)/polystyrene composite and graphene respectably. Actuation is proportional to charging transfer rate, and the electrolysis with an AC voltage input has very complex characteristics. To quantify the actuation property, the strain responses and output model were studied based on electrochemical effects between the nano carbon films and the electrolyte.

Thermal and Mechanical Properties of Epoxy/Micro- and Nano- Mixed Silica Composites for Insulation Materials of Heavy Electric Equipment

  • Park, Jae-Jun;Yoon, Ki-Geun;Lee, Jae-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권3호
    • /
    • pp.98-101
    • /
    • 2011
  • A 10 nm nano-silica was introduced to a conventional 3 ${\mu}M$ micro-silica composite to develop an eco-friendly new electric insulation material for heavy electric equipment. Thermal and mechanical properties, such as glass transition temperature (Tg), dynamic mechanical analysis, tensile and flexural strength, were studied. The mechanical results were estimated by comparing scale and shape parameters in Weibull statistical analysis. The thermal and mechanical properties of conventional epoxy/micro-silica composite were improved by the addition of nano-silica. This was due to the increment of the compaction via the even dispersion of the nano-silica among the micro-silica particles.

수열처리에 의한 세리아가 코팅된 실리카 연마재의 제조 및 Oxide Film의 연마특성 (Preparation of Ceria Coated Silica Abrasive by Hydrothermal Treatment and Polishing Rate on Oxide Film)

  • 유대선;김대성;이승호
    • 한국재료학회지
    • /
    • 제15권12호
    • /
    • pp.818-823
    • /
    • 2005
  • Sub-micron colloidal silica particles coated with nano-sized ceria were prepared by mixing of its silica and cerium salts hydrolysis, and modified by hydrothermal reaction. By using the slurries with and without hydrothermal modification containing above particles, oxide film coated on silicon wafer was polished. The modified slurries had higher polish rate due to increase of ceria fraction to silica through hydrothermal reaction. They revealed higher stability in wide range of pH $2\~10$ than ceria coated silica slurries without its modification.

나노입자 코팅 탄소섬유 강화 복합재료의 전기전도도 향상 (Improvement of Electrical Conductivity of Carbon-Fiber Reinforced Plastics by Nano-particles Coating)

  • 서성욱;하만석;권오양;최흥섭
    • Composites Research
    • /
    • 제23권6호
    • /
    • pp.1-6
    • /
    • 2010
  • 복합재 항공기 동체의 낙뢰손상방지를 목적으로 탄소섬듐-주석 산화물(ITO) 나노입자를 코팅함으로써 탄소섬유강화플라스틱(CFRP) 복합재료의 전기전도도를 향상하였다. 탄소섬유에 코팅된 ITO 나노입자는 10~40%의 농도로 콜로이드 상태에서 분사되었다. CFRP의 전기전도도는 코팅 후 3배 이상 증가하였으며 현재 B-787 복합재 항공기 동체에 사용 중인 기술인 금속메쉬를 CFRP 외층에 매몰한 경우보다도 높은 전기전도도를 얻을 수 있었으며, 나노입자 코팅으로 섬유-기지 계면에 미지는 악영향은 발견되지 않았다. 모의 낙뢰에 의한 손상영역은 각각 다른 처리를 한 재료와 조건에 따라 초음파 C-scan 이미지로 확인하였다. ITO 40% 코팅 시편의 경우 전기전도도는 B-787 샘플의 경우보다 높았지만 낙뢰에 의한 손상영역의 크기는 거의 비슷한 수준이었다.

나노 및 마이크로 입자 비율에 따른 광조형 3D 프린팅용 ZrO2/High-temp 복합 수지의 분산 안정성 및 기계적 특성 (Dispersion Stability and Mechanical Properties of ZrO2/High-temp Composite Resins by Nano- and Micro-particle Ratio for Stereolithography 3D Printing)

  • 송세연;박민수;윤지선
    • 한국재료학회지
    • /
    • 제29권4호
    • /
    • pp.221-227
    • /
    • 2019
  • This study examines the role of the nano- and micro-particle ratio in dispersion stability and mechanical properties of composite resins for SLA(stereolithography) 3D printing technology. VTES(vinyltriethoxysilane)-coated $ZrO_2$ ceramic particles with different nano- and micro-particle ratios are prepared by a hydrolysis and condensation reaction and then dispersed in commercial photopolymer (High-temp) based on interpenetrating networks(IPNs). The coating characteristics of VTES-coated $ZrO_2$ particles are observed by FE-TEM and FT-IR. The rheological properties of VTES-coated $ZrO_2/High-temp$ composite solution with different particle ratios are investigated by rheometer, and the dispersion properties of the composite solution are confirmed by relaxation NMR and Turbiscan. The mechanical properties of 3D-printed objects are measured by a tensile test and nanoindenter. To investigate the aggregation and dispersion properties of VTES-coated $ZrO_2$ ceramic particles with different particle ratios, we observe the cross-sectional images of 3D printed objects using FE-SEM. The 3D printed objects of the composite solution with nano-particles of 80 % demonstrate improved mechanical characteristics.

Synthesization of WC/Co Composite Powders Doped V and Cr by Mechanochemical Method

  • Im, Hoo-Soon;Hur, Jah-Mahn;Lee, Wan-Jae
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.646-647
    • /
    • 2006
  • Nano-sized WC particles in WC/Co composite powders were synthesized by mechanochemical method. The raw powders$(WO_3,\;Co_3O_4,\;VC,\;Cr_3C_2$ and graphite) were mixed by planetary milling for 30 hours. The compositions were WC-10 and -20 wt% Co added VC and $Cr_3C_2$. The direct reduction and carburization of the mixed powders were carried at $900\;^{\circ}C$ for 1 to 3 hours under flowing Ar gas. The mean size of WC particles in WC/Co composite powders was about 16 nm. The resultant powders were compacted and sintered at $1300{\sim}1360\;^{\circ}C$ for 0.5 hour. After sintering the mean size of WC particles was about 50 nm.

  • PDF

유리섬유강화 나노 복합재료의 전자기파 차폐효과 비교 (Comparison of Electromagnetic-wave Shielding Effect in Glass Fiber Reinforced Nano Composites)

  • 정우균;원명식;안성훈
    • 한국정밀공학회지
    • /
    • 제22권10호
    • /
    • pp.121-128
    • /
    • 2005
  • The research on electromagnetic shielding has been advanced for military applications as well as for commercial products. Utilizing the reflective properties and absorptive properties of shielding material, the replied signal measured at the rear surface or at the signal source can be minimized. The shielding effect was obtained from materials having special absorptive properties and structural characteristics such as stacking sequence. Recently researchers studied the electromagnetic properties of nano size particles. In this research {glass fiber}/{epoxy}/{nano particle} composites(GFR-Nano composites) was fabricated using various nano particles, and their properties in electromagnetic shielding were compared. For the visual observation of the nano composite materials, SEM(Scanning Electron Microscope) and TEM(Transmission Electron Microscope) were used. For the measurement of electromagnetic shielding, HP8719ES S-parameter Vector Network Analyser System was used on the frequency range of 8 GHz${\~}$12GHz. Among the nano particles, carbon black and Multi-Walled Carbon Nano-Tube (MWCNT) revealed outstanding electromagnetic shielding. Although silver nano particles (flake and powder) were expected to have effective electromagnetic shielding due to their excellent electric conductivities, test results showed little shielding characteristics.

Mechanochemical Treatment of Quartz for Preparation of EMC Materials

  • Shin, Hee-Young;Chae, Young-Bae;Park, Jai-Koo
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.315-324
    • /
    • 2001
  • Mechanochemical effects that occurred in the fine grinding process of quartz particles using planetary ball mill was investigated. Quartz particles have been frequently utilized for optical materials, semiconductor molding materials. We determined that grinding for a long time can be create amorphous structures from the crystalline quartz by Mechanochemical effects. But, to be produced nano-composite particles that the critical grinding time reached for composite materials in a short time. Henceforth, a qualitative estimation must be conducted on the filler for EMC(Epoxy molding compound) materials. It can be produced mechanochemically treated composite materials and also an integrated grinding efficiency considering of the nano-composite amorphous structured particles. The mechanochemical characteristics were evaluated based on particle morphology, size distribution, specific surface area, density and the amount of amorphous phase materials into the particle surface. The grinding operation in the planetary ball mill can be classified into three stages. During the first stage, initial particle size was reduced for the increase of specific surface area. In the second stage, the specific surface areas increased in spite of the increase in particle size. The final stage as a critical grinding stage, the ground quartz was considered mechanochemically treated particles as a nano- composite amorphous structured particles. The development of amorphous phase on the particle surface was evaluated by X-ray diffractometry, thermal gravity analysis and IR spectrometer. The amount of amorphous phase of particles ground for 2048 minutes was 85.3% and 88.2% by X-ray analysis and thermal gravity analysis, respectively.

  • PDF

Hybrid Composite Nano-sized WC-Co Cemented Carbide

  • Park, Sun-Yong;Lee, Wan-Jae
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.640-641
    • /
    • 2006
  • To improve the mechanical properties of WC-Co cemented carbides, the dual composite was studied. The compositions of granule and matrix were nano-sized WC-6 wt% Co(granule) and normal sized WC-20 wt% Co(matrix), respectively. The granules were grouped 50, 100 and $150\;{\mu}m$ and mixed with WC and Co powders as the volume fractions of granule to matrix were 50 to 50, 40 to 60 and 30 to 70. These compacts were sintered at $1380^{\circ}C$ for 10 minutes in vacuum. The microstructure, transverse rupture strength and wear resistance were investigated.

  • PDF