• 제목/요약/키워드: Nano-composite materials

검색결과 576건 처리시간 0.031초

화염법을 이용한 Pt/C 촉매 제조 (Pt Coating on Flame-Generated Carbon Particles)

  • 최인대;이동근
    • 대한기계학회논문집B
    • /
    • 제33권2호
    • /
    • pp.116-123
    • /
    • 2009
  • Carbon black, activated carbon and carbon nanotube have been used as supporting materials for precious metal catalysts used in fuel cell electrodes. One-step flame synthesis method is used to coat 2-5nm Pt dots on flame-generated carbon particles. By adjusting flame temperature, gas flow rates and resident time of particles in flame, we can obtain Pt/C nano catalyst-support composite particles. Additional injection of hydrogen gas facilitates pyrolysis of Pt precursor in flame. The size of as-incepted Pt dots increases along the flame due to longer resident time and sintering in high temperature flame. Surface coverage and dispersion of the Pt dots is varied at different sampling heights and confirmed by Transmission electron microscopy (TEM), Energy-dispersive spectra (EDS) and X-ray diffraction (XRD). Crystalinity and surface bonding groups of carbon are investigated through X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy.

Microstructural and Mechanical Characteristics of In Situ Synthesized Chromium-Nickel-Graphite Composites

  • Pirso, Juri;Viljus, Mart;Letunovits, Sergei;Juhani, Kristjan
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.631-632
    • /
    • 2006
  • Cr-C-Ni composites were synthesized in situ from elemental powders of Cr, Ni and C by high energy milling followed by reactive sintering. The milled powders with the grain size in nano-scale were pressed to compacts and sintered. During the following thermal treatment at first the chromium carbide was formed and then the $Cr_3C_2-Ni$ cermets were sintered in one cycle. The interface between the binder phase and the carbide grains of the in situ composite has a good bonding strength as it is not contaminated with oxidation films or other detrimental surface reactions.

  • PDF

Size-dependent magneto-electro-elastic vibration analysis of FG saturated porous annular/ circular micro sandwich plates embedded with nano-composite face sheets subjected to multi-physical pre loads

  • Amir, Saeed;Arshid, Ehsan;Arani, Mohammad Reza Ghorbanpour
    • Smart Structures and Systems
    • /
    • 제23권5호
    • /
    • pp.429-447
    • /
    • 2019
  • The present study analyzed free vibration of the three-layered micro annular/circular plate which its core and face sheets are made of saturated porous materials and FG-CNTRCs, respectively. The structure is subjected to magneto-electric fields and magneto-electro-mechanical pre loads. Mechanical properties of the porous core and also FG-CNTRC face sheets are varied through the thickness direction. Using dynamic Hamilton's principle, the motion equations based on MCS and FSD theories are derived and solved via GDQ as an efficient numerical method. Effect of different parameters such as pores distributions, porosity coefficient, pores compressibility, CNTs distribution, elastic foundation, multi-physical pre loads, small scale parameter and aspect ratio of the plate are investigated. The findings of this study can be useful for designing smart structures such as sensor and actuator.

Micro-and nanofibrous scaffold for enhanced cartilage regeneration

  • Lee, Myung-Hee;Shim, In-Kyong;Hwang, Jung-Hyo;Ahn, Hyun-Jung;Lee, Sang-Hoon;Lee, Myung-Chul;Lee, Seung-Jin
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.229.2-230
    • /
    • 2003
  • Extracellular matrix(ECM) is composed of the ground materials(proteoglycan) and nano size diameter fibrous proteins(ex. collagens) that together form a composite-like structure. In this study, fibrous scaffold with biomimetic architecture based on collagen nanofibers interpenetrated in PLGA/chitosan microfibrous matrix. Chitosan was selected for its structure similarity to glycosaminoglycan and neutralizing capacity for PLGA acidic metabolite. Collagen nanofiber were prepared by electrospinning. (omitted)

  • PDF

Application of nanocomposite material in the tennis equipment to avoid the injury

  • Zhanfeng Chen
    • Advances in nano research
    • /
    • 제14권3호
    • /
    • pp.235-246
    • /
    • 2023
  • Nanotechnology, like any other revolutionary innovation in materials science, has significantly influenced the level of competition in sports. Nanotechnology provides various benefits and enormous potential to enhance athletic equipment, making players safer, more comfortable, and more agile. Various sporting equipment is being infused with nanomaterials, including carbon nanotubes (CNTs), silica nanoparticles (SNPs), nanoclays fullerenes, etc., to enhance athlete and equipment performance. Each of these nanomaterials gives athletic equipment an extra benefit like high strength and stiffness, longevity, decreased weight, abrasion resistance, etc. This paper mechanically analysis the structural strength of tennis equipment to avoid injury. As a result, the bending forces are applied to the reinforced structures to investigate their durability.

Application of concrete nanocomposite to improvement in rehabilitation and decrease sports-related injuries in sports flooring

  • Hao Wang;Huiwu Zhang
    • Advances in concrete construction
    • /
    • 제15권2호
    • /
    • pp.75-84
    • /
    • 2023
  • Currently, polymer matrix nanocomposites (PMCs) are a prominent area of research due to their outstanding mechanical, thermal, and durability properties. The increase in recent studies justifies the possibility of using PMCs in structural retrofitting and reconstruction of damaged infrastructure and serving as new structural material. Using nanotechnology, nanocomposite panels in flooring combine concrete and steel, providing a very high level of performance. In sports flooring, high-performance concrete has become a challenge for reducing sports injuries and refinement in rehabilitation. As a composite material, this type of resistant concrete is one of the most durable and complex multi-phase materials. This article uses polyvinyl alcohol polymer (PVC) and multi-walled carbon nanotubes as concrete matrix fillers. Solution methods have been used for dispersing PVC and carbon nanotubes in concrete. The water-cement ratio, carbon nanotube weight ratio, and heat treatment parameters influenced the concrete nanocomposite's tensile and compressive strength. The dispersion of carbon nanotubes in cement paste and the observation of nano-microcracks in concrete was evaluated by scanning electron microscope (SEM).

The effects of carbon nanotubes on improving Tennis Racket Performance and resistance based on Nanotechnology

  • MingYang Xie;Rui Zhang;M. Shokravi
    • Advances in nano research
    • /
    • 제17권2호
    • /
    • pp.157-165
    • /
    • 2024
  • This paper discusses the importance of carbon nanotubes (CNTs) in enhancing performance and resistance of tennis rackets with the application of nanotechnology. This paper discusses how nanomaterials work toward making the equipment lighter, stronger, and more durable by combining CNTs with composite materials in Tennis Rackets. Distinctive properties of the CNTs, such as the very high strength-to-weight ratio and exceptional mechanical resilience, have been exploited in racket performance optimization for better power transmission, increased control on shots, and improved durability. Resistance to wear and tear is discussed in terms of the life of a CNT-enhanced tennis racket and its continued performance with time. The findings imply that the CNTs increase the security and overall performance of tennis rackets, hence promising further innovation in sports technology equipment and the various performances expected from users.

Relaxor Behaviors in xBaTiO3-(1-x)CoFe2O4 Materials

  • Dung, Cao Thi My;Thi, Nhu Hoa Tran;Ta, Kieu Hanh Thi;Tran, Vinh Cao;Nguyen, Bao Thu Le;Le, Van Hieu;Do, Phuong Anh;Dang, Anh Tuan;Ju, Heongkyu;Phan, Bach Thang
    • Journal of Magnetics
    • /
    • 제20권4호
    • /
    • pp.353-359
    • /
    • 2015
  • Dielectric properties of $xBaTiO_3-(1-x)CoFe_2O_4$ composite materials have been investigated. Dielectric properties of $BaTiO_3$, $CoFe_2O_4$ and $0.5BaTiO_3-0.5CoFe_2O_4$ samples show frequency dependence, which is classified as relaxor behavior with different relaxing degree. The relaxor behaviors were described using the modified Curier-Weiss and Vogel-Fulcher laws. Among three above samples, the $BaTiO_3$ sample has highest relaxing degree. Photoluminescence spectral indicated defects, which might in turn control relaxing degree.

펄스전류 활성 소결에 의해 제조된 나노크기의 TiAl계 금속간화합물의 미세구조와 기계적 특성에 미치는 고에너지 기계적 밀링시간의 영향 (Effect of High-Energy Mechanical Milling Time on Microstructure and Mechanical Properties of the Nano-sized TiAl Intermetallic Compounds Fabricated by Pulse Current Activated Sintering)

  • 김지영;우기도;강덕수;김상혁;박상훈
    • 대한금속재료학회지
    • /
    • 제49권2호
    • /
    • pp.161-166
    • /
    • 2011
  • The aim of this study was to determine the effect of high-energy mechanical milling (HEMM) time and sintering temperature on microstructure and mechanical properties of the TiAl composite fabricated by pulse current activated sintering. TiAl intermetallic powders were milled by HEMM for 1h, 4h, and 8h respectively. Thermal analysis was used to observe the phase transformation of the milled TiAl powders. The sintering time decreased with increase of milling time. The hardness and fracture toughness of the sintered specimens also was improved with increasing milling time. The grain size of the sintered specimens which was milled for 4h was in the range of 50~100 nm.

물 분해 과정에서 효율적인 촉매 특성을 보이는 Co3O4 nanocubes 합성 (Synthesis of Co3O4 Nanocubes as an Efficient Electrocatalysts for the Oxygen Evolution Reacitons)

  • 최형욱;정동인;;;강봉균;양우석;윤대호
    • Composites Research
    • /
    • 제32권6호
    • /
    • pp.355-359
    • /
    • 2019
  • 고효율의 물 분해 시스템은 수소 발생 반응(HER)과 산소 발생 반응(OER) 각각에서의 촉매로 인한 전기화학적 반응에서의 효율로 인해 향상되는 높은 과전압의 감소가 수반되어야 한다. 그 중에서도 전이 금속 기반의 화합물(산화물, 황화물, 인화물, 그리고 질화물)은 현재 상용되고 있는 귀금속을 대체할 촉매 재료로써 주목받고 있다. 본 연구에서, 우리는 FESEM 분석을 통해 최적의 단분산된 Co3[Co(CN)6]2 PBAs를 합성하고 XRD, FT-IR 분석을 통하여 결정성을 확인하고 TG-DTA를 통해 PBAs의 열적 거동을 확인하였다. 그리고 합성된 최적의 Co3[Co(CN)6]2 PBAs를 열처리해서 단분산된 Co3O4나노 큐브를 합성하였고 XRD를 통해 이의 결정성을 확인하고 OER 측정을 진행하였다. 최종적으로 합성된 Co3O4 나노 큐브는 10 mA·cm-2의 전류 밀도에서 312 mV의 낮은 과전압과 96.6 mV·dec-1의 낮은 Tafel slope을 보인다.