Browse > Article
http://dx.doi.org/10.3365/KJMM.2011.49.2.161

Effect of High-Energy Mechanical Milling Time on Microstructure and Mechanical Properties of the Nano-sized TiAl Intermetallic Compounds Fabricated by Pulse Current Activated Sintering  

Kim, Ji-Young (Division of Advanced Materials Engineering and RCAMD, Chonbuk National University)
Woo, Kee-Do (Division of Advanced Materials Engineering and RCAMD, Chonbuk National University)
Kang, Duck-Soo (Division of Advanced Materials Engineering and RCAMD, Chonbuk National University)
Kim, Sang-Hyuk (Division of Advanced Materials Engineering and RCAMD, Chonbuk National University)
Park, Snag-Hoon (Division of Advanced Materials Engineering and RCAMD, Chonbuk National University)
Zhang, Deliang (Department of Materials and Process Engineering, The University of Waikato)
Publication Information
Korean Journal of Metals and Materials / v.49, no.2, 2011 , pp. 161-166 More about this Journal
Abstract
The aim of this study was to determine the effect of high-energy mechanical milling (HEMM) time and sintering temperature on microstructure and mechanical properties of the TiAl composite fabricated by pulse current activated sintering. TiAl intermetallic powders were milled by HEMM for 1h, 4h, and 8h respectively. Thermal analysis was used to observe the phase transformation of the milled TiAl powders. The sintering time decreased with increase of milling time. The hardness and fracture toughness of the sintered specimens also was improved with increasing milling time. The grain size of the sintered specimens which was milled for 4h was in the range of 50~100 nm.
Keywords
intermetallics; sintering; microstructure; scanning electron microscopy (SEM); TiAl alloy;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 F. Appel and R. Wangner, Mater. Sci. Eng. R22, 187 (1998).
2 A. Couret, G. Molenat, J. Galy, and M. Thomas, Intermetallic 16, 1134 (2008).   DOI   ScienceOn
3 Y. Y. Chen, H. B. Yu, D. L. Zhang, and L. H. Chai, Mater. Sci. Eng. A 525, 166 (2009).   DOI   ScienceOn
4 S. H. Yang, S. K. Hyun, and M. S. Kim, J. Kor. Inst. Met. & Mater. 37, 1246 (1999).
5 J. T. Yum, J. T. Moon, Y. H. Lee, and Y. S. Kim, Mat. Mater. Int. 1, 19 (1995).
6 J. R. Ryu, K. I. Moon, and K. S. Lee, J. Kor. Inst. Met. & Mater. 37, 1363 (1999).
7 E. O. Hall, Proc. Phys. Soc. London 643, 747 (1951).
8 N. J. Petch, J. Iron Steel Inst. London 173, 25 (1953).
9 D. L. Zhang, Prog. Mater. Sci. 49, 537 (2004).   DOI   ScienceOn
10 D. L. Zhang and D. Y. Ying, Mat. Sci. Eng. A301, 90 (2001).
11 K. D. Woo, D. S. Kang, E. P. Kwon, M. S. Moon, I. J. Shon, and Z. Liu, J. Kor. Inst. Met. & Mater. 47, 508 (2009).
12 K. T. Lee, D. K. Kim, J. H. Park, and I. N. Shon, Ceram. Int. 35, 1345 (2009).   DOI   ScienceOn
13 C. Suryanarayana and M. Grant Norton, X-ray Diffraction: A Practical Approach, Plenum Press, New York, 207-213 (1998).
14 G. R. Antis, P. Chantikul, B. R. Lawn, and D. B. Marshall, J. Am. Ceram. Soc. 64, 533 (1981).   DOI
15 K. I. Moon and K. S. Lee, J. Kor. Inst. Met. & Mater. 36, 909 (1998).
16 S. L. Xiao, J. Tian, L. J. Xu, Y. Y. Chen, H. B. Yu, and J. C. Han, Trans. Nonferrous Met. Soc. China 19, 1423 (2009).   DOI   ScienceOn