DOI QR코드

DOI QR Code

Effect of High-Energy Mechanical Milling Time on Microstructure and Mechanical Properties of the Nano-sized TiAl Intermetallic Compounds Fabricated by Pulse Current Activated Sintering

펄스전류 활성 소결에 의해 제조된 나노크기의 TiAl계 금속간화합물의 미세구조와 기계적 특성에 미치는 고에너지 기계적 밀링시간의 영향

  • Kim, Ji-Young (Division of Advanced Materials Engineering and RCAMD, Chonbuk National University) ;
  • Woo, Kee-Do (Division of Advanced Materials Engineering and RCAMD, Chonbuk National University) ;
  • Kang, Duck-Soo (Division of Advanced Materials Engineering and RCAMD, Chonbuk National University) ;
  • Kim, Sang-Hyuk (Division of Advanced Materials Engineering and RCAMD, Chonbuk National University) ;
  • Park, Snag-Hoon (Division of Advanced Materials Engineering and RCAMD, Chonbuk National University) ;
  • Zhang, Deliang (Department of Materials and Process Engineering, The University of Waikato)
  • 김지영 (전북대학교 공과대학 신소재공학부, 신소재 개발연구센터) ;
  • 우기도 (전북대학교 공과대학 신소재공학부, 신소재 개발연구센터) ;
  • 강덕수 (전북대학교 공과대학 신소재공학부, 신소재 개발연구센터) ;
  • 김상혁 (전북대학교 공과대학 신소재공학부, 신소재 개발연구센터) ;
  • 박상훈 (전북대학교 공과대학 신소재공학부, 신소재 개발연구센터) ;
  • Received : 2010.08.31
  • Published : 2011.02.25

Abstract

The aim of this study was to determine the effect of high-energy mechanical milling (HEMM) time and sintering temperature on microstructure and mechanical properties of the TiAl composite fabricated by pulse current activated sintering. TiAl intermetallic powders were milled by HEMM for 1h, 4h, and 8h respectively. Thermal analysis was used to observe the phase transformation of the milled TiAl powders. The sintering time decreased with increase of milling time. The hardness and fracture toughness of the sintered specimens also was improved with increasing milling time. The grain size of the sintered specimens which was milled for 4h was in the range of 50~100 nm.

Keywords

References

  1. F. Appel and R. Wangner, Mater. Sci. Eng. R22, 187 (1998).
  2. A. Couret, G. Molenat, J. Galy, and M. Thomas, Intermetallic 16, 1134 (2008). https://doi.org/10.1016/j.intermet.2008.06.015
  3. Y. Y. Chen, H. B. Yu, D. L. Zhang, and L. H. Chai, Mater. Sci. Eng. A 525, 166 (2009). https://doi.org/10.1016/j.msea.2009.06.056
  4. S. H. Yang, S. K. Hyun, and M. S. Kim, J. Kor. Inst. Met. & Mater. 37, 1246 (1999).
  5. J. T. Yum, J. T. Moon, Y. H. Lee, and Y. S. Kim, Mat. Mater. Int. 1, 19 (1995).
  6. J. R. Ryu, K. I. Moon, and K. S. Lee, J. Kor. Inst. Met. & Mater. 37, 1363 (1999).
  7. E. O. Hall, Proc. Phys. Soc. London 643, 747 (1951).
  8. N. J. Petch, J. Iron Steel Inst. London 173, 25 (1953).
  9. D. L. Zhang, Prog. Mater. Sci. 49, 537 (2004). https://doi.org/10.1016/S0079-6425(03)00034-3
  10. D. L. Zhang and D. Y. Ying, Mat. Sci. Eng. A301, 90 (2001).
  11. K. D. Woo, D. S. Kang, E. P. Kwon, M. S. Moon, I. J. Shon, and Z. Liu, J. Kor. Inst. Met. & Mater. 47, 508 (2009).
  12. K. T. Lee, D. K. Kim, J. H. Park, and I. N. Shon, Ceram. Int. 35, 1345 (2009). https://doi.org/10.1016/j.ceramint.2008.06.017
  13. C. Suryanarayana and M. Grant Norton, X-ray Diffraction: A Practical Approach, Plenum Press, New York, 207-213 (1998).
  14. G. R. Antis, P. Chantikul, B. R. Lawn, and D. B. Marshall, J. Am. Ceram. Soc. 64, 533 (1981). https://doi.org/10.1111/j.1151-2916.1981.tb10320.x
  15. K. I. Moon and K. S. Lee, J. Kor. Inst. Met. & Mater. 36, 909 (1998).
  16. S. L. Xiao, J. Tian, L. J. Xu, Y. Y. Chen, H. B. Yu, and J. C. Han, Trans. Nonferrous Met. Soc. China 19, 1423 (2009). https://doi.org/10.1016/S1003-6326(09)60044-3