DOI QR코드

DOI QR Code

The effects of carbon nanotubes on improving Tennis Racket Performance and resistance based on Nanotechnology

  • MingYang Xie (College of Science, North China University of Technology) ;
  • Rui Zhang (College of Science, North China University of Technology) ;
  • M. Shokravi (Energy institute of higher education, Mehrab High School)
  • Received : 2024.04.05
  • Accepted : 2024.08.03
  • Published : 2024.08.25

Abstract

This paper discusses the importance of carbon nanotubes (CNTs) in enhancing performance and resistance of tennis rackets with the application of nanotechnology. This paper discusses how nanomaterials work toward making the equipment lighter, stronger, and more durable by combining CNTs with composite materials in Tennis Rackets. Distinctive properties of the CNTs, such as the very high strength-to-weight ratio and exceptional mechanical resilience, have been exploited in racket performance optimization for better power transmission, increased control on shots, and improved durability. Resistance to wear and tear is discussed in terms of the life of a CNT-enhanced tennis racket and its continued performance with time. The findings imply that the CNTs increase the security and overall performance of tennis rackets, hence promising further innovation in sports technology equipment and the various performances expected from users.

Keywords

Acknowledgement

General Science and Technology Projects of Beijing Municipal Education Commission Number KM202410009005

References

  1. Arbabi, A., Kolahchi, R. and Rabani Bidgoli, M. (2017), "Concrete columns reinforced with Zinc Oxide nanoparticles subjected to electric field: buckling analysis", Wind Struct., 24(5), 431-446. https://doi.org/10.12989/was.2017.24.5.431.
  2. Amoli, A., Kolahchi, R. and Rabani Bidgoli, M. (2018), "Seismic analysis of AL2O3 nanoparticles-reinforced concrete plates based on sinusoidal shear deformation theory", Earthq. Struct. 15(3), 285-294. https://doi.org/10.12989/eas.2018.15.3.285.
  3. Azmi, M., Kolahchi, R. and Rabani Bidgoli, M. (2019), "Dynamic analysis of concrete column reinforced with Sio2 nanoparticles subjected to blast load", Adv. Concr. Constr., 7(1), 51-63. https://doi.org/10.12989/acc.2019.7.1.051.
  4. Bilouei, B.S., Kolahchi, R. and Bidgoli, M.R., (2018), "Buckling of beams retrofitted with Nano-Fiber Reinforced Polymer (NFRP)", Comput. Concr., 18(5), 1053-1063. https://doi.org/10.12989/cac.2018.18.5.1053.
  5. Bakhshandeh Amnieh, H., Zamzam, M.S. and Kolahchi, R. (2018), "Dynamic analysis of non-homogeneous concrete blocks mixed by SiO2 nanoparticles subjected to blast load experimentally and theoretically", Constr. Build. Mater., 174, 633-644. https://doi.org/10.1016/j.conbuildmat.2018.04.140.
  6. Formica, G., Lacarbonara, W. and Alessi, R. (2010). "Vibrations of carbon nanotube reinforced composites", J. Sound Vib., 329, 1875-1889. https://doi.org/10.1016/j.jsv.2009.11.020.
  7. Golabchi, H., Kolahchi, R. and Rabani Bidgoli, M. (2018), "Vibration and instability analysis of pipes reinforced by SiO2 nanoparticles considering agglomeration effects", Comput. Concr., 21(4), 431-440. https://doi.org/10.12989/cac.2018.21.4.431.
  8. Gao, Y., Guo, W. and Baghaei, Sh. (2024), "Ceramic based nanocomposites with alumina-carbon nanotube reinforcement for improved energy absorption in sports-related injuries: Microstructural analysis and low velocity impact", Ceram. Int., 50, 11129-11137. https://doi.org/10.1016/j.ceramint.2024.01.014.
  9. Hajmohammad, M.H., Azizkhani, M.B. and Kolahchi, R. (2018a), "Multiphase nanocomposite viscoelastic laminated conical shells subjected to magneto-hygrothermal loads: Dynamic buckling analysis", Int. J. Mech. Sci., 137, 205-213. https://doi.org/10.1016/j.ijmecsci.2018.01.026 .
  10. Hajmohammad, M.H., Maleki, M. and Kolahchi, R. (2018b), "Seismic response of underwater concrete pipes conveying fluid covered with nano-fiber reinforced polymer layer", Soil Dyn. Earthq. Eng., 110, 18-27. https://doi.org/10.1016/j.soildyn.2018.04.002
  11. Hajmohammad, M.H., Nouri, A.H., Zarei, M.S. and Kolahchi, R. (2019a), "A new numerical approach and visco-refined zigzag theory for blast analysis of auxetic honeycomb plates integrated by multiphase nanocomposite facesheets in hygrothermal", Eng. Comput., 35(4), 1141-1157. https://doi.org/10.1007/s00366-018-0655-x.
  12. Hajmohammad, M.H., Kolahchi, R., Zarei, M.S. and Nouri, A.H. (2019b), "Dynamic response of auxetic honeycomb plates integrated with agglomerated CNT-reinforced face sheets subjected to blast load based on visco-sinusoidal theory", Int. J. Mech. Sci., 153, 391-401. https://doi.org/10.1016/j.ijmecsci.2019.02.008.
  13. Hajmohammad, M.H., Zarei, M.S., Kolahchi, R. and Karami, H. (2019c), "Visco-piezoelasticity-zigzag theories for blast response of porous beams covered by graphene platelet-reinforced piezoelectric layers", J. Sandw. Struct. Mater., 1099636219839175. https://doi.org/10.1177/1099636219839175.
  14. Hajmohammad, M.H., Farrokhian, A. and Kolahchi, R. (2021), "Dynamic analysis in beam element of wave-piercing Catamarans undergoing slamming load based on mathematical modelling", Ocean Eng., 234, 109269. https://doi.org/10.1016/j.oceaneng.2021.109269.
  15. Jafarian Arani, A. and Kolahchi, R. (2016). "Buckling analysis of embedded concrete beams armed with carbon nanotubes", Comput. Concr., 17(5), 567-578. https://doi.org/10.12989/cac.2016.17.5.567.
  16. Kang, J., Liu, G., Hu, Q., Huang, Y., Liu, L., Dong, L. and Guo, L. (2023), "Parallel Nanosheet Arrays for Industrial Oxygen Production", J. Am. Chem. Soc., 145(46), 25143-25149. https://doi.org/10.1021/jacs.3c05688
  17. Keshtegar, B. and Kolahchi, R. (2018), "Reliability analysis-based conjugate map of beams reinforced by ZnO nanoparticles using sinusoidal shear deformation theory", Steel Compos. Struct., 28(2), 195-20. https://doi.org/10.12989/scs.2018.28.2.195.
  18. Keshtegar, B., Motezaker, M., Kolahchi,R. and Trung, N.T. (2020a), "Wave propagation and vibration responses in porous smart nanocomposite sandwich beam resting on Kerr foundation considering structural damping", Thin Wall. Struct. 154, 106820. https://doi.org/10.1016/j.tws.2020.106820
  19. Keshtegar, B., Farrokhian, A., Kolahchi, R. and Trung, N.T. (2020b), "Dynamic stability response of truncated nanocomposite conical shell with magnetostrictive face sheets utilizing higher order theory of sandwich panels", Eur. J. Mech. A Solids, 82, 104010. https://doi.org/10.1016/j.euromechsol.2020.104010
  20. Keshtegar, B., Tabatabaei, J., Kolahchi, R. and Trung, N.T. (2020c), "Dynamic stress response in the nanocomposite concrete pipes with internal fluid under the ground motion load", Adv. Concr. Constr., 9(3), 327-335. https://doi.org/10.12989/acc.2020.9.3.327.
  21. Kolahchi, R., Rabani Bidgoli, M., Beygipoor, G. and Fakhar, M.H. (2013), "A nonlocal nonlinear analysis for buckling in embedded FG-SWCNT-reinforced microplates subjected to magnetic field", J. Mech. Sci. Tech., 5, 2342-2355. https://doi.org/10.1007/s12206-015-0811-9.
  22. Kolahchi, R., Safari, M. and Esmailpour, M. (2016a), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023.
  23. Kolahchi, R., Hosseini, H. and Esmailpour, M. (2016b), "Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based on visco-nonlocal-piezoelasticity theories", Compos. Struct., 157, 174-186. https://doi.org/10.1016/j.compstruct.2016.08.032.
  24. Kolahchi, R. and Moniribidgoli, A.M. (2016), "Size-dependent sinusoidal beam model for dynamic instability of single-walled carbon nanotubes", Appl. Math. Mech., 37(2), 265-274. https://doi.org/10.1007/s10483-016-2030-8.
  25. Liew, K.M., Lei, Z.X., Yu, J.L. and Zhang, L.W. (2014), "Postbuckling of carbon nanotube-reinforced functionally graded cylindrical panels under axial compression using a meshless approach", Comput. Methods Appl. Mech. Engrg., 268, 1-17. https://doi.org/10.1016/j.cma.2013.09.001
  26. Motezaker, M. and Kolahchi, R. (2017a), "Seismic response of concrete columns with nanofiber reinforced polymer layer", Comput. Concr., 20(3), 361-368. https://doi.org/10.12989/cac.2017.20.3.361
  27. Motezaker, M. and Kolahchi, R. (2017b), "Seismic response of SiO2 nanoparticles-reinforced concrete pipes based on DQ and newmark methods", Comput. Concr., 19(6), 745-753. https://doi.org/10.12989/cac.2017.19.6.745.
  28. Motezaker, M., Kolahchi, R., Rajak, D.K. and Mahmoud, S.R. (2021), "Influences of fiber reinforced polymer layer on the dynamic deflection of concrete pipes containing nanoparticle subjected to earthquake load", Polym. Compos., 42(8), 4073-4081. https://doi.org/10.1002/pc.26118
  29. Mehar, K. and Panda, S.K. (2023), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 181. http://doi.org/10.12989/anr.2023.7.3.181.
  30. Peng, Ch., Liu, H.C., Wu, M., Han, L. and Wang, Zh. (2023), "A sensitive electrochemical sensor for detection of methyl-testosterone as a doping agent in sports by CeO2/CNTs nanocomposite", Int. J. Elecrochem. Sci., 18, 25-30. https://doi.org/10.1016/j.ijoes.2023.01.014.
  31. Taherifar, R., Zareei, S.A., Rabani Bidgoli, M. and Kolahchi, R. (2021), "Application of differential quadrature and Newmark methods for dynamic response in pad concrete foundation covered by piezoelectric layer", J. Comput. Appl. Math., 382, 113075. https://doi.org/10.1016/j.cam.2020.113075.
  32. Thai, H.T. and Vo, T.P. (2012), "A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 54, 58-66. https://doi.org/10.1016/j.ijengsci.2012.01.009.
  33. Thai, H.T. (2012), "A nonlocal beam theory for bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 52, 56-64. https://doi.org/10.1016/j.ijengsci.2011.11.011
  34. Taherifar, R., Zareei, S.A., Rabani Bidgoli, M. and Kolahchi, R. (2020), "Seismic analysis in pad concrete foundation reinforced by nanoparticles covered by smart layer utilizing plate higher order theory", Steel Compos. Struct., 37(1), 99-115, http://doi.org/10.12989/scs.2020.37.1.099.
  35. Wang, W., Jin, Y., Mu, Y., Zhang, M. and Du, J. (2023), "A novel tubular structure with negative Poisson's ratio based on gyroid-type triply periodic minimal surfaces", Virtual Phys. Prototyp., 18(1), e2203701. https://doi.org/10.1080/17452759.2023.2203701
  36. Wuite, J. and Adali, S. (2005), "Deflection and stress behaviour of nanocomposite reinforced beams using a multiscale analysis", Compos. Struct., 71, 388-396. https://doi.org/10.1016/j.compstruct.2005.09.011.
  37. Yang, L. (2023), "Challenges and recent progress in carbon-based nanocomposites for sportswear and sensing applications", Mater. Res. Exp., 10, 052001. https://doi.org/10.1088/2053-1591/accf64.
  38. Zamanian, M., Kolahchi, R. and Rabani Bidgoli, M. (2017), "Agglomeration effects on the buckling behaviour of embedded concrete beams reinforced with SiO2 nano-particles", Wind Struct., 24(1), 43-57. http://doi.org/10.12989/was.2017.24.1.043.