• Title/Summary/Keyword: Nano-catalyst

Search Result 291, Processing Time 0.03 seconds

수소량에 따른 그라핀의 두께와 결함 변화 (The effect of hydrogen flow rate on defects and thickness uniformity in graphene)

  • 안효섭;김은호;장현철;조원주;이완규;정종완
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.262-262
    • /
    • 2010
  • To investigate the effect of the amount of hydrogen on CVD grown-graphene, the flow rate of hydrogen was changed, while other process parameters were kept constant during CVD synthesis. Substrate which consists of 300nm-nickel/$SiO_2$/Si substrate, and methane gas mixed with hydrogen and argon were used for CVD growth. Graphene was synthesized at $950^{\circ}C$. The thickness and the defect of graphene were analyzed using raman spectroscopy. The synthesized graphene shows non-uniform and more defective below a certain amount of hydrogen.

  • PDF

화학기상증착법에 의한 탄소나노튜브의 성장에 미치는 암모니아 가스의 영향 (Effect of Ammonia Gas on Growth of Chemically Vapor-Deposited Carbon Nanotubes)

  • 이동구
    • 한국전기전자재료학회논문지
    • /
    • 제23권5호
    • /
    • pp.418-423
    • /
    • 2010
  • Carbon nanotubes (CNTs) were synthesized by Fe-catalytic chemical vapor deposition (CVD) method about $800^{\circ}C$. The influence of process parameters such as pretreatment conditions, gas flow ratio, processing time, etc on the growth of CNTs was investigated by field emission scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. Ammonia was added to acetylene source gas before and during the CNT growth. Different types of CNTs formed depending upon the processing condition. It was found that ammonia prevented amorphous carbons from adsorbing to the outer wall of CNT, resulting in purification of CNTs during CNT growth.

수소연료전지용 탄탈륨 탄화물에 대한 암모니아 분해반응 (Ammonia Decomposition Over Tantalum Carbides of Hydrogen Fuel Cell)

  • 최정길
    • 신재생에너지
    • /
    • 제9권1호
    • /
    • pp.51-59
    • /
    • 2013
  • Tantalum carbide crystallites which is to be used for $H_2$ fuel cell has been synthesized via a temperature-programmed reduction of $Ta_2O_5$ with pure $CH_4$. The resultant Ta carbide crystallites prepared using two different heating rates and space velocity exhibit the different surface areas. The $O_2$ uptake has a linear relation with surface area, corresponding to an oxygen capacity of $1.36{\times}10^{13}\;O\;cm^{-2}$. Tantalum carbide crystallites are very active for hydrogen production form ammonia decomposition reaction. Tantalum carbides are as much as two orders of magnitude more active than Pt/C catalyst (Engelhard). The highest activity has been observed at a ratio of $C_1/Ta^{{\delta}+}=0.85$, suggesting the presence of electron transfer between metals and carbon in metal carbides.

Platinum nanocomposites and its applications: A review

  • Sharon, Madhuri;Nandgavkar, Isaac;Sharon, Maheshwar
    • Advances in materials Research
    • /
    • 제6권2호
    • /
    • pp.129-153
    • /
    • 2017
  • Platinum is a transition metal that is very resistant to corrosion. It is used as catalyst for converting methyl alcohol to formaldehyde, as catalytic converter in cars, for hydrocracking of heavy oils, in Fuel Cell devices etc. Moreover, Platinum compounds are important ingredient for cancer chemotherapy drugs. The nano forms of Platinum due to its unique physico-chemical properties that are not found in its bulk counterpart, has been found to be of great importance in electronics, optoelectronics, enzyme immobilization etc. The stability of Platinum nanoparticles has supported its use for the development of efficient and durable proton exchange membrane Fuel Cells. The present review concentrates on the use of Platinum conjugated with various metal or compounds, to fabricate nanocomposites, to enhance the efficiency of Platinum nanoparticles. The recent advances in the synthesis methods of different Platinum-based nanocomposites and their applications in Fuel Cell, sensors, bioimaging, light emitting diode, dye sensitized solar cell, hydrogen generation and in biosystems has also been discussed.

A New Nanohybrid Photocatalyst between Anatase (TiO2) and Layered Titanate

  • Lee, Hyun-Cheol;Jeong, Hyun;Oh, Jae-Min;Choy, Jin-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권3호
    • /
    • pp.477-480
    • /
    • 2002
  • A new microporous TiO2-pillared layered titanate has been successfully prepared by hybridizing the exfoliated titanate with the anatase TiO2 nano-sol. According to the X-ray diffraction analysis and N2 adsorption-desorption isotherms, the TiO2-pillared layered titanate showed a pillar height of ~2 nm with a high surface area of ~460 m2/g and a pore size of ~0.95 nm, indicating that a microporous pillar structure is formed. Its photocatalytic activity was evaluated by measuring the photodegradation rate of 4-chlorophenol during irradiation of catalyst suspensions in an aqueous solution. An enhancement in activity of ca. 170% was obtained for TiO2-pillared layered titanate compared to that of the pristine compound such as layered cesium titanate.

Photocatalytic Epoxidation of Olefins Using Molecular O2 by TiO2 Incorporated in Hydrophobic Y Zeolite

  • Kuwahara, Yasutaka;Magatani, Yasuhiro;Yamashita, Hiromi
    • Rapid Communication in Photoscience
    • /
    • 제4권1호
    • /
    • pp.19-21
    • /
    • 2015
  • Zeolite is an ideal host material for encapsulating nano-size metal catalyst species because of its defined microporous structure, prominent adsorption/condensation properties, high surface area, chemical/thermal stability, and transparency to light. In this study, $TiO_2$ photocatalyst was incorporated in highly hydrophobic Y zeolite and its photocatalytic activity was examined in the photocatalytic oxidation of olefins under UV-light irradiation using molecular oxygen as an oxygen source. $TiO_2$ nanoparticles incorporated in hydrophobic Y zeolite exhibited a markedly enhanced photocatalytic activity compared with bare $TiO_2$ owing to its excellent affinity toward organic moieties, which facilitates the mass transfer of organic substrates and allows them to efficiently access to the neighboring active $TiO_2$ surface.

Different Growth Position of Iridium-catalyzed Carbon Nanofibers on the Substrate According to the Value of the Applied Bias Voltage

  • Kim, Sung-Hoon
    • 한국재료학회지
    • /
    • 제16권1호
    • /
    • pp.25-29
    • /
    • 2006
  • Vertical growth of iridium-catalyzed carbon nanofibers could be selectively grown on the MgO substrate using microwave plasma-enhanced chemical vapor deposition method. Growth positions of the iridium-catalyzed carbon nanofibers on the MgO substrate could be manipulated according to the applied bias voltage. At-150 V, the carbon nanofibers growth was confined only at the corner area of the substrate. Based on these results, we discussed the cause for the confinement of the vertically grown carbon nanofibers on the specific area of the MgO substrate as a function of the applied bias voltage.

Room-temperature synthesis of cobalt nanoparticles and their use as catalysts for Methylene Blue and Rhodamine-B dye degradation

  • Mondal, Arijit;Mondal, Asish;Mukherjee, Debkumar
    • Advances in nano research
    • /
    • 제3권2호
    • /
    • pp.67-79
    • /
    • 2015
  • Air stable nanoparticles were prepared from cobalt sulphate using tetra butyl ammonium bromide as surfactant and sodium borohydride as reductant at room temperature. The cobalt nanocolloids in aqueous medium were found to be efficient catalysts for the degradation of toxic organic dyes. Our present study involves degradation of Methylene Blue and Rhodamine-B using cobalt nanoparticles and easy recovery of the catalyst from the system. The recovered nanoparticles could be recycled several times without loss of catalytic activity. Palladium nanoparticles prepared from palladium chloride and the same surfactant were found to degrade the organic dyes effectively but lose their catalytic activity after recovery. The cause of dye colour discharge by nanocolloids has been assigned based on our experimental findings.

리튬이온전지용 산화갈륨 (β-Ga2O3) 나노로드 (Nanorods) 음극 활물질의 물리적.전기화학적 특성 (Physical and Electrochemical Properties of Gallium Oxide (β-Ga2O3) Nanorods as an Anode Active Material for Lithium Ion Batteries)

  • 최영진;류호석;조규봉;조권구;류광선;김기원
    • 전기화학회지
    • /
    • 제12권2호
    • /
    • pp.189-195
    • /
    • 2009
  • 고순도의 $\beta-Ga_{2}O_{3}$ 나노로드(nanorods)가 니켈산화물 나노입자를 촉매로 사용하고 갈륨금속분말을 원료물질로 이용하여 화학기상증착법으로 합성되었다. 전계방출형 주사전자현미경을 이용하여 $\beta-Ga_{2}O_{3}$ 나노로드를 관찰한 결과, 평균직경은 약 160 nm 그리고 평균길이는 $4{\mu}m$였으며 vaporsolid(VS) 성장기구를 통하여 성장되었음을 알 수 있었다. X-선 회절시험과 고분해능 투과전자 현미경을 이용한 결정구조 분석 결과, 합성된 나노로드의 내부는 단사정계 결정구조를 가지는 단결정의 $\beta-Ga_{2}O_{3}$로 이루어져 있고 외벽은 비정질 갈륨옥사이드로 이루어진 코어-셀 구조로 구성되어 있는 것을 확인하였다. 합성된 $\beta-Ga_{2}O_{3}$ 나노로드를 음극 활물질로 사용하여 전극을 제조하고 전기화학적 특성을 분석한 결과, 리튬/$\beta-Ga_{2}O_{3}$ 나노로드 전지는 첫 방전 시 867 mAh/g-$\beta-Ga_{2}O_{3}$의 높은 용량을 나타내었으나 초기 비가역 용량으로 인해 62%의 낮은 충 방전 효율을 나타내었다. 그러나 5 사이클 이후 높은 충 방전 효율을 보이며 30 사이클까지 안정된 사이클 특성을 나타내었다.