DOI QR코드

DOI QR Code

Different Growth Position of Iridium-catalyzed Carbon Nanofibers on the Substrate According to the Value of the Applied Bias Voltage

  • Kim, Sung-Hoon (Department of Nano Chemistry Materials & Engineering, Silla University)
  • Published : 2006.01.27

Abstract

Vertical growth of iridium-catalyzed carbon nanofibers could be selectively grown on the MgO substrate using microwave plasma-enhanced chemical vapor deposition method. Growth positions of the iridium-catalyzed carbon nanofibers on the MgO substrate could be manipulated according to the applied bias voltage. At-150 V, the carbon nanofibers growth was confined only at the corner area of the substrate. Based on these results, we discussed the cause for the confinement of the vertically grown carbon nanofibers on the specific area of the MgO substrate as a function of the applied bias voltage.

Keywords

References

  1. Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Sirgal and P. N. Provencio, Science 282, 1105 (1998) https://doi.org/10.1126/science.282.5391.1105
  2. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Casell and H. Dai, Science 283, 512 (1999) https://doi.org/10.1126/science.283.5401.512
  3. S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. J. Geerligs and C. Dekker, Nature 386, 474 (1997) https://doi.org/10.1038/386474a0
  4. L. Marty, V. Bouchiat, A. M. Bonnot, M. Chaumont, T. Foutnier, S. Decossas and S. Roche, Microelectronic Engineering, 61-62, 485 (2002) https://doi.org/10.1016/S0167-9317(02)00487-2
  5. J.-M. Bobard, H. Kind, T. Stockli and L.-O. Nilsson, Solid-State Electronics, 45, 893 (2001) https://doi.org/10.1016/S0038-1101(00)00213-6
  6. W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao and G. Wang, Science 274, 1701 (1996) https://doi.org/10.1126/science.274.5293.1701
  7. Y.-T. Jang, J.-H. Ahn, B.-K. Ju and Y.-H. Lee, Solid-state Communications, 126, 305 (2003) https://doi.org/10.1016/S0038-1098(03)00164-9
  8. S. Zhu, C.-H. Su, J. C. Cochrane, S. Lehoczky, Y. Cui and A. Burger, J. Cryst. Growth 234, 584 (2002) https://doi.org/10.1016/S0022-0248(01)01709-2
  9. C. Zhou, J. Kong, E. Yenilmez and H. Dai, Science, 290, 1552 (2000) https://doi.org/10.1126/science.290.5496.1552
  10. H. Dai, J. Kong, C. Zhou, N. Franklin, T. Tombler, A. Cassel, S. Fan and M. J. Chapline, Phys. Chem. B, 103, 11246 (1999) https://doi.org/10.1021/jp992328o
  11. Y. Homma, T. Yamashita, P. Finnie, M. Tomita and T. P. Ogino, Jpn. J. Appl. Phys. Part 2, 41, L89 (2002) https://doi.org/10.1143/JJAP.41.L89
  12. C. Bower, W. Zhu, J. Sungho and O. Zhou, Appl. Phys. Lett., 77, 830 (2000) https://doi.org/10.1063/1.1306658
  13. Y. C. Choi, D. W. Kim, T. J. Lee, C. J. Lee and Y. H. Lee, Synthetic Metals, 117, 81 (2001) https://doi.org/10.1016/S0379-6779(00)00542-7
  14. R. Jimenez-Catafio and M. B. Hall, Organometallics, 15, 1889 (1996) https://doi.org/10.1021/om950416z
  15. C. Q. Wang, A. R. Lewis and F. Aubke, Inorg. Chem., 35, 1279 (1996) https://doi.org/10.1021/ic9506769
  16. D. R. Lide(Eds.), CRC Handbook of Chemistry and Physics, 70nd ed. CRC, B-21 (1989)