Browse > Article
http://dx.doi.org/10.4313/JKEM.2010.23.5.418

Effect of Ammonia Gas on Growth of Chemically Vapor-Deposited Carbon Nanotubes  

Lee, Dong-Gu (Department of Information and Nano Materials Engineering, Kumoh National Institute of Technology)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.23, no.5, 2010 , pp. 418-423 More about this Journal
Abstract
Carbon nanotubes (CNTs) were synthesized by Fe-catalytic chemical vapor deposition (CVD) method about $800^{\circ}C$. The influence of process parameters such as pretreatment conditions, gas flow ratio, processing time, etc on the growth of CNTs was investigated by field emission scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. Ammonia was added to acetylene source gas before and during the CNT growth. Different types of CNTs formed depending upon the processing condition. It was found that ammonia prevented amorphous carbons from adsorbing to the outer wall of CNT, resulting in purification of CNTs during CNT growth.
Keywords
Ammonia; Carbon nanotube; Catalytic CVD; Fe catalyst;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. Iijima, Nature 354, 56 (1991).   DOI
2 J. W. G. Wilder, L. C. Venema, A. G. Rinzler, R. E.Smalley, and C. Dekker, Nature 391, 59 (1998).   DOI
3 S. Iijima and T. Ichihashi, Nature 363, 603 (1993).   DOI
4 T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T, Thio,and P. A. Wolff, Nature 391, 667 (1998).   DOI
5 D.-G. Lee, M. Yi, H. Jung, W.-S. Seo, J.-W. Park,H.-T. Chun, and N.-J. Koh, Materials Science Forum 426-432, 2297, (2003).   DOI
6 A. C. Dillon, K. M. Jones, T. A. Bekedahl, C. H.Kang, D. S. Bethune, and M. J. Heben, Nature 386,377 (1997).   DOI
7 J. Lefebvre, M. Radosavljevic, and A. T. Johnson,Appl. Phys. Lett. 76, 3828 (2000).   DOI
8 P. G. Collins, A. Zettl, H. Bando, A. Thess, and R.E. Smalley, Science 278, 100 (1997).   DOI
9 C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M.Lamy de la Chapelle, S. Lefrant, P. Deniard, R. Lee,and J. E. Fisher, Nature 388, 756 (1997).   DOI
10 A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J.Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzier,D. T. Colbert, G. E. Scuseria, J. E. Fisher, and R.E. Smalley, Science 273, 483 (1996).   DOI   ScienceOn
11 Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P.Bush, M. P. Siegal, and P. N. Provencio, Science282, 1105 (1998).   DOI   ScienceOn
12 C. Bower, W. Zhu, S. Jin, and O. Zhou, Appl. Phys. Lett. 77, 830 (2000).   DOI
13 C. J. Lee, D. W. Kim, T. J. Lee, Y. C. Choi, Y. S.Park, Y. H. Lee, W. B. Choi, N. S. Lee, G. S. Park,and J. M. Kim, Chem. Phys. Lett. 312, 461 (1999).   DOI
14 S. Fan, M. G. Chapline, N. R. Franklin, T. W.Tombler, A. M. Cassell, and H. Dai, Science 283,512 (1999).   DOI   ScienceOn
15 M. Yudasaka, R. Kikuchi, T. Matsui, Y. Ohki, S.Yoshimura, and E. Ota, Appl. Phys. Lett. 67, 2477(1995).   DOI
16 T.-Y. Kim, K.-H. Oh, M.-J. Jung, S.-C. Lee, andK.-R. Lee, J. Korean Vac. Soc. 12, 70 (2003).
17 G. S. Choi, Y. S. Cho, S. Y. Hong, J. B. Park, K. H.Son, and D. J. Kim, J. Appl. Phys. 91, 3847 (2002).   DOI
18 W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S.Zou, W. Y. Zhou, R. A. Zhao, and G. Wang, Science274, 1701 (1996).   DOI   ScienceOn
19 X. H. Chen, S. Q. Feng, Y. Ding, J. C. Peng, and Z.Z, Chen, Thin Solid Films 339, 6 (1999).   DOI
20 S. H. Tsai, C. W. Chao, C. L. Lee, and H. C. Shin,Appl. Phys. Lett. 74, 3462 (1999).   DOI
21 W. Li, H. Zhang, C. Wang, Y. Zhang, L. Xu, K. Zhu,and S. Xie, Appl. Phys. Lett. 70, 2684 (1997).   DOI