Browse > Article
http://dx.doi.org/10.5229/JKES.2009.12.2.189

Physical and Electrochemical Properties of Gallium Oxide (β-Ga2O3) Nanorods as an Anode Active Material for Lithium Ion Batteries  

Choi, Young-Jin (School of Nano and Advanced Materials Engineering, Gyeongsang National University)
Ryu, Ho-Suk (School of Nano and Advanced Materials Engineering, Gyeongsang National University)
Cho, Gyu-Bon (School of Nano and Advanced Materials Engineering, Gyeongsang National University)
Cho, Kwon-Koo (School of Nano and Advanced Materials Engineering, Gyeongsang National University)
Ryu, Kwang-Sun (Department of Chemistry, University of Ulsan)
Kim, Ki-Won (School of Nano and Advanced Materials Engineering, Gyeongsang National University)
Publication Information
Journal of the Korean Electrochemical Society / v.12, no.2, 2009 , pp. 189-195 More about this Journal
Abstract
$\beta-Ga_{2}O_{3}$ nanorods were synthesized by chemical vapor deposition method using nickel-oxide nanoparticle as a catalyst and gallium metal powder as a source material. The average diameter of nanorods was around 160 nm and the average length was $4{\mu}m$. Also, we confirmed that the synthesis of nanorods follows the vapor-solid growth mechanism. From the results of X-ray diffraction and HR-TEM observation, it can be found that the synthesized nanorods consisted of a typical core-shell structure with single-crystalline $\beta-Ga_{2}O_{3}$ core with a monoclinic crystal structure and an outer amorphous gallium oxide layer. Li/$\beta-Ga_{2}O_{3}$ nanorods cell delivered capacity of 867 mAh/g-$\beta-Ga_{2}O_{3}$ at first discharge. Although the Li/$\beta-Ga_{2}O_{3}$ nanorods cell showed low coulombic efficiency at first cycle, the cell exhibited stable cycle life property after fifth cycle.
Keywords
$\beta-Ga_{2}O_{3}$; Nanorods; Anode material; Lithium secondary battery;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. NuLi, P. Zhang, Z. Cuo, H. Liu, J. Electrochem. Soc. 155, A196 (2008)   DOI
2 J. Y. Luo, H. M. Xiong, Y. Y. Xia, J. Phys. Chem. C 112, 12051 (2008)   DOI   ScienceOn
3 B. Tang, G. L.Wang, L. H. Zhuo, J. C. Ge, L. J. Cui, Inorg. Chem. 45, 5196 (2006)   DOI   ScienceOn
4 C. N. R. Rao, F. L. Deepak, G. Gundiah, A. Govindaraj, Prog. Solid State Chem. 31, 8 (2003)
5 G. W. Sears, Acta Metal. 3, 361 (1955)   DOI   ScienceOn
6 Y. Huang, S. Yue, Z. Wang, Q. Wang, C. Shi, Z. Xu, X. D. Bai, C. Tang, and C. Gu, J. Phys. Chem. B 110, 797 (2006)
7 W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, S. T. Lee, J. Vac, Sci. Technol. B 19, 1115 (2001)   DOI   ScienceOn
8 X. F. Duan, J. F. Wang, C. M. Lieber, Appl. Phys. Lett. 76, 1116 (2000)   DOI   ScienceOn
9 S. C. Lyu, Y. Zhang, H. Ruh, H. J. Lee, C. J. Lee, Chem. Phys. Lett. 367, 717 (2003)   DOI   ScienceOn
10 C. J. Wen, R. A. Huggins, J. Electrochem. Soc. 128, 1638 (1981)
11 K. T. Lee, Y. S. Jung, J. Y. Kwon, J. H. Kim, S. M. Oh, Chem. Mater. 20, 449 (2008)
12 M. Yoshio, T. Tsumura, N. Dimov, J. of Power Sources 146, 10 (2005)   DOI   ScienceOn
13 J. Yang, Y. Takeda, N. Imanishi, C. Capiglia, J.Y. Xie, O. Yamamoto, Solid State Ionics 152-153, 125 (2002)   DOI   ScienceOn
14 H. Guo, S. Zhao, H. Zhao, Y. Chen, Electrochim. Acta 54, 4040 (2009)   DOI   ScienceOn
15 G. Wang, X. Shen, J. Yao, D. Wexler, J. H. Ahn, Electrochem. Commun. 11, 546 (2009)   DOI   ScienceOn
16 L. B. Chen, N. Lu, C. M. Xu, H. C. Yu, T. H. Wang, Electrochim. Acta (2009) article in press   DOI   ScienceOn
17 H. Liu, G. Wang, J. S. Park, J. Wang, H. Liu, C. Zhang, Electrochim. Acta 54, 1733 (2009)   DOI   ScienceOn