• Title/Summary/Keyword: Nano-Fabrication

Search Result 1,156, Processing Time 0.043 seconds

Fabrication of Nano-Pattern Mold Using Anodic Aluminum Oxide Template (양극산화 알루미늄을 이용한 나노패턴 성형용 금형제작)

  • Oh, J.G.;Kim, J.S.;Kang, J.J.;Kim, J.D.;Yoon, K.H.;Hwang, C.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.240-243
    • /
    • 2009
  • Recently, many researches on the development of super-hydrophobic and anti-reflective surfaces have been concentrated on the fabrication of nano-patterned products. The nano-patterned mold is a key to replicate nano-patterned products by mass production techniques such as injection molding and UV molding. The present paper proposes fabricating nano-patterned mold with cost-effective method. The nano-pattern molded was fabricated by electroforming the anodic aluminum oxide template without E-beam lithography. The final mold with nano-patterns showed the pores with the diameter of $100{\sim}120$ nm and the height of 150 nm was fabricated.

  • PDF

Development of Nano Stage for Ultra High Vacuum (진공용 나노스테이지 개발)

  • 홍원표;강은구;이석우;최헌종
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.472-477
    • /
    • 2004
  • Miniaturization is the central theme in modern fabrication technology. Many of the components used in modem products are becoming smaller and smaller. The direct write FIB technology has several advantages over contemporary micromachining technology, including better feature resolution with low lateral scattering and capability of mastless fabrication. Therefore, the application of focused ion beam(FIB) technology in micro fabrication has become increasingly popular. In recent model of FIB, however the feeding system has been a very coarse resolution of about a few ${\mu}{\textrm}{m}$. It is not unsuitable to the sputtering and the deposition to make the high-precision structure in micro or macro scale. Our research is the development of nano stage of 200mm strokes and l0nm resolutions. Also, this stage should be effectively operating in ultra high vacuum of about 1$\times$10$^{-5}$ pa. This paper presents the concept of nano stages and the discussion of the material treatment for ultra tush vacuum.

  • PDF

Fabrication of Nickel Nano and Microstructures by Redeposition Phenomena in Ion Etching Process (이온식각공정의 재증착 현상을 이용한 니켈 마이크로 나노 구조물 제작)

  • Jung, Phill-Gu;Hwang, Sung-Jin;Lee, Sang-Min;Ko, Jong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.50-54
    • /
    • 2007
  • Nickel nano and microstructures are fabricated with simple process. The fabrication process consists of nickel deposition, lithography, nickel ion etching and plasma ashing. Well-aligned nickel nanowalls and nickel self-encapsulated microchannels were fabricated. We found that the ion etching condition as a key fabrication process of nickel nanowalls and self-encapsulated microchannels, i.e., 40 sccm Ar flow, 550 W RF power, 15 mTorr working pressure, and $20^{\circ}C$ water cooled platen without using He backside cooling unit and with using it, respectively. We present the experimental results and discuss the formational conditions and the effect of nickel redeposition on the fabrication of nickel nano and microstructures.

Advancement in fabrication of sensors using nanotechnology: A bibliographic review and future research scope

  • Ujwala A. Kshirsagar;Devank C. Joshi
    • Advances in nano research
    • /
    • v.14 no.5
    • /
    • pp.399-407
    • /
    • 2023
  • As Sensor plays an important part in day-to-day life. Sensors are used almost in each domain wherein humans are not able to sense or measure some parameters. Say from sensing a real-time activity of a person to sensing the tiny molecules of any gas or structures. Now sensors combined with advanced fabrication techniques with nanotechnology can be said as a game-changing combination. As the modern world is evolving every minute, the size of the components, instruments, and different equipment is shrinking rapidly. For example, the sensor or any other element which was used 10 years ago is reduced up to 5 times its original size and all of this is possible because of continuous advancement done in the manufacturing and fabrication techniques that are being used nowadays. Apart from this, it is not necessary that the term nano should only justify the size of the sensor. Nanotechnologically fabricated, refers to a sensor or any other element which may be large enough as compared to the regular one but they may be structured using some nano-particles.

A Study on the Fabrication of Nano Pattern using a Nickel Stamper Replicated from Anodic Aluminum Oxide (Anodic Aluminum Oxide 기반 니켈 스탬퍼를 이용한 나노패턴 성형에 관한 연구)

  • Kim, S.;Kim, J.S.;Hong, S.K.;Kim, H.J.;Yoon, K.H.;Kang, J.J.
    • Transactions of Materials Processing
    • /
    • v.20 no.1
    • /
    • pp.23-28
    • /
    • 2011
  • For the fabrication of nano patterned products manufacturing a nano patterned mold is needed in advance. The nano patterned stamper was fabricated by electroforming the AAO master with nickel. The surface of nickel-plated stamper had nano-patterned holes with the diameter of 73 nm and the depth of 83 nm. Hot embossing was used for forming P3HT sheet and the process factors of hot embossing were closer as pressure, temperature and time. In the present paper hot embossing experiments were performed to find the main process conditions to affect the replication ratio of nano patterns on surface of P3HT sheet. As a result, main contributing factors for the replication ratio of hot embossed pattern could be sequentially enumerated as pressure, temperature and time.

Maskless Nano-fabrication by using both Nanoscratch and HF Wet Etching Technique (나노스크래치와 HF 에칭기술을 병용한 Pyrex 7740의 마스크리스 나노 가공)

  • 윤성원;이정우;강충길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.628-631
    • /
    • 2003
  • This study describes a new mastless nano-fabrication technique of Pyrex 7740 glass using the combination of nanomachining by nano-indenter XP and HF wet etching. First, the surface of a Pyrex 7740 glass specimen was machined by using the nano-machining system, which utilizes the mechanism of the nano-indenter XP. Next, the specimen was etched by HF solution. After the etching process, the convex structure or deeper hole is made because of masking or promotion effect of the affected layer generated by nano-machining. On the basis of this interesting fact. some sample structures were fabricated.

  • PDF

Fabrication of branched Ga2O3 nanowires by post annealing with Au seeds

  • Lee, Mi-Seon;Seo, Chang-Su;Gang, Hyeon-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.203-203
    • /
    • 2015
  • Gallium Oxide (Ga2O3) has been widely investigated for the optoelectronic applications due to its wide bandgap and the optical transparency. Recently, with the development of fabrication techniques in nanometer scale semiconductor materials, there have been an increasing number of extensive reports on the synthesis and characterization of Ga2O3 nano-structures such as nano-wires, nano-belts, and nano-dots. In contrast to typical vapor-liquid-solid growth mode with metal catalysts to synthesis 1-dimensional nano-wires, there are several difficulties in fabricating the nano-structures by using sputtering techniques. This is attributed to the fact that relatively low growth temperatures and higher growth rate compared with chemical vapor deposition method. In this study, Ga2O3 nanowires (NWs) were synthesized by using radio-frequency magnetron sputtering method. The NWs were then coated by Au thin films and annealed under Ar or N2 gas enviroment with no supply of Gallium and Oxygen source. Several samples were prepared with varying the post annealing parameters such as gas environment annealing time, annealing temperature. Samples were characterized by using XRD, SEM, and PL measurements. In this presentation, the details of fabrication process and physical properties of branched Ga2O3 NWs will be reported.

  • PDF

Fabrication of Metallic Nano-Filter Using UV-Imprinting Process (UV 임프린팅 공정을 이용한 금속막 필터제작)

  • Noh Cheol Yong;Lee Namseok;Lim Jiseok;Kim Seok-min;Kang Shinill
    • Transactions of Materials Processing
    • /
    • v.14 no.5 s.77
    • /
    • pp.473-476
    • /
    • 2005
  • The demand of on-chip total analyzing system with MEMS (micro electro mechanical system) bio/chemical sensor is rapidly increasing. In on-chip total analyzing system, to detect the bio/chemical products with submicron feature size, a filtration system with nano-filter is required. One of the conventional methods to fabricate nano-filter is to use direct patterning or RIE (reactive ion etching). However, those procedures are very costly and are not suitable fur mass production. In this study, we suggested new fabrication method for a nano-filter based on replication process, which is simple and low cost process. After the Si master was fabricated by laser interference lithography and reactive ion etching process, the polymeric mold was replicated by UV-imprint process. Metallic nano-filter was fabricated after removing the polymeric part of metal deposited polymeric mold. Finally, our fabrication method was applied to metallic nano-filter with $1{\mu}m$ pitch size and $0.4{\mu}m$ hole size for bacteria sensor application.

Fabrication of Nano Master with Anti-reflective Surface Using Aluminum Anodizing Process (양극산화공정을 이용한 반사방지 성형용 나노 마스터 개발)

  • Shin, H.;Park, Y.;Seo, Y.;Kim, B.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.6
    • /
    • pp.697-701
    • /
    • 2009
  • A simple method for the fabrication of porous nano-master for the anti-reflection effect on the transparent substrates is presented. In the conventional fabrication methods for antireflective surface, coating method using materials with low refractive index has usually been used. However, it is required to have a high cost and long processing time for mass production. In this paper, we developed a porous nano-master with anti-reflective surface for the molding stamper of the injection mold, hot embossing and UV imprinting by using the aluminum anodizing process. Through two-step anodizing and etching processes, a porous nano-master with anti-reflective surface was fabricated at the large area. Pattern size Pore diameter and inter-pore distance are about 130nm and 200nm, respectively. In order to replicate anti-reflective structure, hot embossing process was performed by varying the processing parameters such as temperature, pressure and embossing time etc. Finally, antireflective surface can be successfully obtained after etching process to remove selectively silicon layer of AAO master.

  • PDF