DOI QR코드

DOI QR Code

Advancement in fabrication of sensors using nanotechnology: A bibliographic review and future research scope

  • Ujwala A. Kshirsagar (Symbiosis Institute of Technology (SIT) affiliated to Symbiosis International Deemed University) ;
  • Devank C. Joshi (Symbiosis Institute of Technology (SIT) affiliated to Symbiosis International Deemed University)
  • Received : 2021.02.23
  • Accepted : 2023.01.09
  • Published : 2023.05.25

Abstract

As Sensor plays an important part in day-to-day life. Sensors are used almost in each domain wherein humans are not able to sense or measure some parameters. Say from sensing a real-time activity of a person to sensing the tiny molecules of any gas or structures. Now sensors combined with advanced fabrication techniques with nanotechnology can be said as a game-changing combination. As the modern world is evolving every minute, the size of the components, instruments, and different equipment is shrinking rapidly. For example, the sensor or any other element which was used 10 years ago is reduced up to 5 times its original size and all of this is possible because of continuous advancement done in the manufacturing and fabrication techniques that are being used nowadays. Apart from this, it is not necessary that the term nano should only justify the size of the sensor. Nanotechnologically fabricated, refers to a sensor or any other element which may be large enough as compared to the regular one but they may be structured using some nano-particles.

Keywords

References

  1. Avramov-Zamurovic, S., Dagalakis, N.G., Lee, R.D., Yoo, J.M., Kim, Y.S. and Yang, S.H. (2011), "Embedded capacitive displacement sensor for nanopositioning applications", IEEE T. Instrum. Measur., 60(7), 2730-2737. https://doi.org/10.1109/tim.2011.2126150
  2. Belorkar, U. (2017), "Fabrication of Si based memory using 6x6 array of memristers", Int. J. Adv. Res. Electr. Commun. Eng., 6(10),2278-909X.
  3. Bishop, M.D., Hills, G., Srimani, T., Lau, C., Murphy, D., Fuller, S., Humes, J., Ratkovich, A., Nelson, M. and Shulaker, M.M. (2020), "Fabrication of carbon nanotube field-effect transistors in commercial silicon manufacturing facilities", Nature Electr., 3(8), 492-501. https://doi.org/10.1038/s41928-020-0419-7
  4. El-Safty, S.A. and Shenashen, M.A. (2020), "Advanced nanoscale build-up sensors for daily life monitoring of diabetics", Adv. Mater. Interf., 7(15), 2000153-2000153. https://doi.org/10.1002/admi.202000153
  5. Huang, Y., Hao, C., Liu, J., Guo, X., Zhang, Y., Liu, P., Liu, C., Zhang, Y. and Yang, X. (2019), "Highly stretchable, rapid-response strain sensor based on SWCNTs/CB nanocomposites coated on rubber/latex polymer for human motion tracking", Sensor Rev., 39(2), 233-245. https://doi.org/10.1108/sr-01-2018-0004
  6. Kasani, S., Curtin, K. and Wu, N. (2019), "A review of 2D and 3D plasmonic nanostructure array patterns: Fabrication, light management and sensing applications", Nanophotonics, 8(12), 2065-2089. https://doi.org/10.1515/nanoph-2019-0158
  7. Kim, D.J., Ha, D., Zhou, Q., Thokchom, A.K., Lim, J.W., Lee, J., Park, J.G. and Kim, T. (2017), "A cracking-assisted micro-/nanofluidic fabrication platform for silver nanobelt arrays and nanosensors", Nanoscale, 9(27), 9622-9630. https://doi.org/10.1039/c7nr02354e
  8. Moo, J.G.S., Mayorga-Martinez, C.C., Wang, H., Khezri, B., Teo, W.Z. and Pumera, M. (2017), "Nano/microrobots meet electrochemistry", Adv. Funct. Mater., 27(12), 1604759. https://doi.org/10.1002/adfm.201604759
  9. Pham, T., Qamar, A., Dinh, T., Masud, M.K., Rais-Zadeh, M., Senesky, D.G., Yamauchi, Y., Nguyen, N. and Phan, H. (2020), "Nanoarchitectonics for wide bandgap semiconductor nanowires: Toward the next generation of nanoelectron-mechanical systems for environmental monitoring", Adv. Sci., 7(21), 2001294. https://doi.org/10.1002/advs.202001294
  10. Rao, F.B., Almumen, H., Fan, Z., Li, W. and Dong, L.X. (2012), "Inter-sheet-effect-inspired graphene sensors: design, fabrication and characterization", Nanotechnology, 23(10), 105501. https://doi.org/10.1088/0957-4484/23/10/105501
  11. Schwalb, C.H., Grimm, C., Baranowski, M., Sachser, R., Porrati, F., Reith, H., Das, P., Muller, J., Volklein, F., Kaya, A. and Huth, M. (2010), "A tunable strain sensor using nanogranular metals", Sensors, 10(11), 9847-9856. https://doi.org/10.3390/s101109847
  12. Tang, N., Zhou, C., Xu, L., Jiang, Y., Qu, H. and Duan, X. (2019), "A fully integrated wireless flexible ammonia sensor fabricated by soft nano-lithography", ACS Sensors, 4(3), 726-732. https://doi.org/10.1021/acssensors.8b01690
  13. Tapar, S., Kumbhare, P. and Belorkar, U. (2018), "HfO2 based MIS type RRAM as an electronic synapse", Proceedings of the 2018 4th IEEE International Conference on Emerging Electronics (ICEE). https://doi.org/10.1109/icee44586.2018.8937990
  14. Wang, Z., Lee, S., Koo, K. and Kim, K. (2016), "Nanowire-based sensors for biological and medical applications", IEEE T. NanoBiosci., 15(3), 186-199. https://doi.org/10.1109/tnb.2016.2528258
  15. Yan, H., Choe, H.S., Nam, S., Hu, Y., Das, S., Klemic, J.F., Ellenbogen, J.C. and Lieber, C.M. (2011), "Programmable nanowire circuits for nanoprocessors", Nature, 470(7333), 240-244. https://doi.org/10.1038/nature09749
  16. Yu, X.G., Li, Y.Q., Zhu, W.B., Huang, P., Wang, T.T., Hu, N. and Fu, S.Y. (2017), "A wearable strain sensor based on a carbonized nano-sponge/silicone composite for human motion detection", Nanoscale, 9(20), 6680-6685. https://doi.org/10.1039/C7NR01011G
  17. Zhong, A., Sasaki, T., Fan, P., Zhang, D., Luo, J. and Hane, K. (2018), "Integrated H2 nano-sensor array on GaN honeycomb nanonetwork fabricated by MEMS-based technology", Sensors Actuat. B Chem., 255, 2886-2893. https://doi.org/10.1016/j.snb.2017.09.107