• Title/Summary/Keyword: Nano tip

Search Result 188, Processing Time 0.025 seconds

A Study on the Measurement of Young's Modulus of Carbon Nano Tube (탄소 나노 튜브의 영 계수 측정에 관한 연구)

  • 이준석;최재성;강경수;곽윤근;김수현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.682-685
    • /
    • 2003
  • In this paper, we propose the method to measure the Young's modulus of carbon nano tube which was manufactured by chemical vapor deposition. We also made the tungsten tip by electrochemical etching process and the carbon nano tube which was detangled through ultra-sonication with isopropyl alcohol was attached to the tungsten tip. This tip which was composed of tungsten tip and carbon nano tube can be used in Young's modulus measurement by applying DC voltage with counter electrode. The attachment process and measurement of the deflection of carbon nano tube was done under optical microscope.

  • PDF

Errors of Surface Image Due to the Different Tip of Nano-Indenter (나노인덴터 압입팁의 특성에 따른 표면 이미지 오차 연구)

  • Kim, Soo-In;Lee, Chan-Mi;Lee, Chang-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.5
    • /
    • pp.346-351
    • /
    • 2009
  • Due to the decrease of line width and increase of the integration level of the device, it is expected that 'Bottom-up' method will replace currently used 'Top-down' method. Researches about 'Bottom-up' device production such as Nanowires and Nanobelts are widely held on. To utilize these technologies in devices, properties of matter should be exactly measured. Nano-indenters are used to measure the properties of nano-scale structures. Additionally, Nano-indenters provide AFM(Atomic Force Microscopy) function to get the image of the surface and get physical properties for exact position of nano-structure using this image. However, nano-indenter tips have relatively much bigger size than ordinary AFM probes, there occurs considerable error in surface image by Nano-Indenter. Accordingly, this research used 50nm Berkovich tip and 1um $90^{\circ}$ Conical tip, which are commonly used in Nano-Indenter. To find out the surface characteristics for each kind of tip, we indented the surface of thin layer by each tip and compared surface image and indentation depth. Then, we got image of 100nm-size structure by surface scanning using Nano-Indenter and compared it with surface image gained by current AFM technology. We calculated the errors between two images and compared it with theoretical error.

Nano Visual Servoing Loop Using SEM Image (전자현미경 영상을 이용한 나노 비주얼 서보잉)

  • Choi, Jin-Ho;Ahn, Sang-Jung;Park, Byong-Chon;Lyou, Joon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1876-1882
    • /
    • 2008
  • Nano manipulator is used to manufacture Carbon NanoTube(CNT) tips. Using nano manipulator, operator attaches a CNT at the apex of Atomic Force Microscope(AFM) tip, which requires a mastery of mechanics and long manufacture time. Nano manipulator is installed inside a Scanning Electron Microscope(SEM) chamber to observe the operation. This paper presents a control scheme for horizontal axes of nano manipulator via processing SEM image. Edges of AFM tip and CNT are first detected, and the position information so obtained is fed to control horizontal axes of nano manipulator. That is, a visual servoing loop is realized to control the axes more precisely in nano scale.

Arbitrary Cutting of a single CNT tip in Nanogripper using Electrochemical Etching

  • Lee Junsok;Kwak Yoonkeun;Kim Soohyun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.46-49
    • /
    • 2005
  • Recently, many research results have been reported about nano-tip using carbon nanotube because of its better sensing ability compared to a conventional silicon tip. However, it is very difficult to identify the carbon nanotube having proper length for nano-tip and to attach it on a conventional tip. In this paper, a new method is proposed to make a nano-tip and to control its length. The electrochemical etching method was used to control the length by cutting the carbon nanotube of arbitrary length and it was possible to monitor the process through current measurement. The etched volume of carbon nanotube was determined by the amount of applied charge. The carbon nanotube was successfully cut and could be used in the nanogripper.

A Study on the Control of the Length of Carbon-Nano-Tube Probe (탄소나노튜브 프로브의 길이 제어에 관한 연구)

  • Lee, Jun-Sok;Kwak, Yoon-Keun;Kim, Soo-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1888-1891
    • /
    • 2003
  • In this paper, we proposed a new method to control the length of carbon nano tube in the single CNT probe. A single CNT probe was composed of a tungsten tip made by the electrochemical etching and carbon nano tube which was grown by CVD and prepared through the sonication. The two components were attached with the carbon tape. Since the length of CNT can not be controlled during the manufacturing, the post process is needed to shorten the CNT. In this paper, we proposed the method of electrochemical process. The process was done under the optical microscope and the results were checked by SEM. The diameter of the carbon nano tube used in this paper was about 130nm because the above process had to be done with the optical microscope. Using the method proposed in this paper, we can control the length of the nano tube tip.

  • PDF

Fabrication of Nano Probe for Atomic Force Microscopy Using Electron Beam Direct Deposition Method (전자빔 직접 조사법을 이용한 AFM용 나노 프로브의 제작)

  • Park, Sung-Hwak;Yi, In-Je;Kim, Yong-Sang;Sung, Seung-Yeon;Kim, Jae-Wan;Choi, Y.J.;Kang, C.J.;Kim, Sung-Hyun;Shin, J.K.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1649-1650
    • /
    • 2006
  • 반도체 소자의 선폭이 나노미터 스케일로 진입함에 따라 소자의 물리적 특성을 나노미터 스케일에서 정밀하게 측정하고자 하는 요구가 증대되고 있다. Atomic Force Microscopy (AFM)은 나노미터 이하의 해상도를 가지고 물질 표면의 기하하적, 전기적 특성 등을 측정할 수 있으므로 나노소자 연구에 필수적인 도구가 되었다. 그러나 AFM은 낮은 측정속도와 탐침의 기하학적 형상에 의한 AFM 영상의 왜곡 등과 같은 치명적인 단점도 가지고 있다. AFM의 낮은 측정 속도를 개선하기 위해서 진보된 마이크로머시닝기술을 이용하여 캔틸레버의 크기를 줄이거나 캔틸레버 위에 박막 구동기를 집적시키는 등의 노력이 진행되고 있으나, 이 경우 전통적인 식각 공정을 이용하여 캔틸레버 위에 tip을 형성하는 것이 매우 어렵다. 본 연구에서는 이미 제작된 캔틸레버 위에 전자빔 조사법을 이용하여 탄소상 tip을 직접 성장시킴으로써 전통적인 식각 공정에 비해 매우 간단하고 값싸며, 활용도가 높은 공정을 개발하였다. 탄소상 tip 성장에 필요한 탄소 소스는 dipping 방법을 이용하여 공급하였고, 시분할법을 사용하여 캔틸레버의 원하는 위치에 tip을 성장시킬 수 있었다. 이렇게 제작된 tip은 최대 $5{\mu}m$ 높이까지 가능했으며, 종횡비는 10:1 이상이어서 tip의 형상에 의한 AFM 영상 왜곡 현상을 최소화할 수 있을 것으로 기대된다.

  • PDF

Wear Characteristics of Atomic force Microscope Tip (Atomic Force Microscope Tip 의 마멸특성에 관한 연구)

  • 정구현;김대은
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.189-195
    • /
    • 2003
  • Atomic Force Microscope (AFM) has been widely used in micro/nano-scale studies and applications for. the last few decade. In this work, wear characteristics of silicon-based AFM tip was investigated. AFM tip shape was observed using a high resolution SEM and the wear coefficient was approximately calculated based on Archard's wear equation. It was shown that the wear coefficient of silicon and silicon nitride were in the range of ${10}^{-1}$~${10}^{-3}$ and ${10}^{-3}$~${10}^{-4}$, respectively. Also, the effect of relative humidity and sliding distance on adhesion-induced tip wear was discussed. It was found that the tip wear has more severe for harder test materials. Finally, the probable wear mechanism was analyzed from the adhesive and abrasive interaction point of view.

Wear Characteristics of Atomic Force Microscope Tip

  • Chung, Koo-Hyun;Kim, Dae-Eun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.2
    • /
    • pp.39-45
    • /
    • 2004
  • Atomic Force Microscope (AFM) has been widely used in micro/nano-scale studies and applications for the last few decades. In this work, wear characteristics of silicon-based AFM tip was investigated. AFM tip shape was observed using a high resolution SEM and the wear coefficient was approximately calculated based on Archard's wear equation. It was shown that the wear coefficient of Si and ${Si}_3$$N_4$ tips were in the range of ${10}^{-1}$~${10}^{-3}$and ${10}^{-3}$~${10}^{-4}$, respectively. Also, the effect of relative humidity and sliding distance on adhesion-induced tip wear was investigated. It was found that the tip wear has more severe for harder counter surface materials. Finally, the probable wear mechanism was analyzed from the adhesive and abrasive interaction point of view.

Molecular Dynamics Simulation of Adhesion Processes

  • Cho, Sung-San;Park, Seungho
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1440-1447
    • /
    • 2002
  • Adhesion of a hemispherical tip to the flat surface in nano-structures is simulated using the molecular dynamics technique. The tip and plates are modeled with the Lennard-Jones molecules. The simulation focuses on the deformation of the tip. Detailed descriptions on the evolution of interaction force, the energy dissipation due to adhesion hysteresis, the forma- tion-growth-breakage of adhesive junction as well as the evolution of molecular distribution during the process are presented. The effects of the tip size, the maximum tip approach, the tip temperature, and the affinity between the tip and the mating plate are also discussed.

A Study on the Nano-Lithography using FE-tip (FE-tip을 이용한 Nano-Lithography 기술에 관한 연구)

  • Choi, Je-Hyuk;Park, Sun-Woo;Kim, Chul-Ju
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.1160-1163
    • /
    • 1999
  • In this study, we developed FE-tip lithography system that could apply to multi-tip system and did lithography using FE-tip. The software that control FE-tip lithography system, was proposed for acquiring more adaptive data to compensate the effect of fluctuation. We found that the fluctuation effect was reduced. The minimum line width was related to applied voltage and we observed a movement of Z-axis piezo stage to correct the error of this system. When FE current was 5nA, scanning speed was $3{\mu}m/sec$ and applied voltage was 200V, we made a line pattern which had minimum line width of 614 nm. If we reduce applied voltage to several decades and increase scanning speed to $20{\mu}m/sec$, it is possible to set the minimum line width of 100 nm. The proposed system can be easily applied to multi FE-tip lithography system.

  • PDF