• Title/Summary/Keyword: Nano solution

Search Result 1,211, Processing Time 0.027 seconds

Effectiveness of fibers and binders in high-strength concrete under chemical corrosion

  • Nematzadeh, Mahdi;Fallah-Valukolaee, Saber
    • Structural Engineering and Mechanics
    • /
    • v.64 no.2
    • /
    • pp.243-257
    • /
    • 2017
  • Investigating the properties and durability of high-strength concrete exposed to sulfuric acid attack for the purpose of its application in structures exposed to this acid is of outmost importance. In this research, the resistance and durability of high-strength concrete containing macro-polymeric or steel fibers together with the pozzolans of silica fume or nano-silica against sulfuric acid attack are explored. To accomplish this goal, in total, 108 high-strength concrete specimens were made with 9 different mix designs containing macro-polymeric and steel fibers at the volume fractions of 0.5, 0.75, and 1.0%, as well as the pozzolans of silica fume and nano-silica with the replacement levels of 10 and 2%, respectively. After placing the specimens inside a 5% sulfuric acid solution in the periods of 7, 21, and 63 days of immersion, the effect of adding the fibers and pozzolans on the compressive properties, ultrasonic pulse velocity (UPV), and weight loss of high-strength concrete was investigated and the respective results were compared with those of the reference specimens. The obtained results suggest the dependency of the resistance and durability loss of high-strength concrete against sulfuric acid attack to the properties of fibers as well as their fraction in concrete volume. Moreover, compared with using nano-silica, using silica fume in the fibrous concrete mix leads to more durable specimens against sulfuric acid attack. Finally, an optimum solution for the design parameters where the crushing load of high-strength fibrous concrete is maximized was found using response surface method (RSM).

Congruent LiNbO3 Crystal Periodically Poled by Applying External Field (외부전계 인가에 의한 조화용융조성 LiNbO3 결정의 주기적 분극반전)

  • Kwon, Soon-Woo;Yang, Woo-Seok;Lee, Hyung-Man;Kim, Woo-Kyung;Lee, Han-Young;Yoon, Dae-Ho;Song, Yo-Seung
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.11 s.282
    • /
    • pp.749-752
    • /
    • 2005
  • When an electric field higher than a characteristic coercive field is applied to a ferroelectric such as $LiNbO_3$, the orientation of the spontaneous polarization is reversed, which causes the reversal of the sign of odd-rank tensor properties such as electro-optic and nonlinear optic coefficients. A fabrication process of insulator and periodic external field assisted poling of a z-cut $LiNbO_3$ have been optimized for a periodic $180^{\circ}$ phase inversion along z-axis. The poling jig and the poling control system, fully controlled by a computer, for high quality and reproducible PPLN fabrication have been devised. Periodically polarization reversed PPLN was adjusted based on the fabricated thickness of insulator. The poling structure of PPLN was observed under a microscope after etching PPLN samples by an etching solution ($HF:HNO_3$ = 1 : 2) for about 15 min.

3-Dimensional Coating Polymer Microneedles for Economical and Efficient Transdermal Drug Delivery (경제적이고 효과적인 경피 약물전달을 위한 3차원 구조의 코팅 고분자 마이크로니들)

  • Lee, Han-Sol;Park, Jung-Hwan
    • Polymer(Korea)
    • /
    • v.38 no.3
    • /
    • pp.391-396
    • /
    • 2014
  • Polymer microneedles can be fabricated by a micromolding method, an easy and cost-effective method. However, it is not easy to achieve uniform coating with an aqueous coating solution due to hydrophobic surface of polymer microneedles. 3-Dimensional coating polymer microneedles could deliver more than twice as much dose as in-plane metal microneedles by increasing coating area and the number of microneedles per unit area. A uniform coating was not obtained by addition of coating additives in the coating solution. The satisfied coating was achieved by treatment of surface of polymer microneedle with metal deposition and UV/ozone, and UV/ozone treatment was an ultimate surface treatment method based on biological safety. Calcein coating polymer microneedles were prepared by using UV/ozone treatment and followed dip-coating, and they delivered calcein in porcine skin successfully after 15 min of insertion.

Preparation of Nano Size Cerium Oxide from Cerium Carbonate (탄산(炭酸)세륨으로부터 나노크기 산화(酸化)세륨 제조연구(製造硏究))

  • Kim, Sung-Don;Kim, Chul-Joo;Yoon, Ho-Sung
    • Resources Recycling
    • /
    • v.18 no.6
    • /
    • pp.24-29
    • /
    • 2009
  • Since cerium carbonate becomes porous cerium oxide by releasing carbon dioxide and vapour steam during calcination of cerium carbonate, nano size cerium oxide can be obtained by milling calcined cerium carbonate. Therefore cerium carbonate [$Ce_2(CO_3)3{\cdot}XH_2O$] is used generally for the preparation of nano size cerium oxide. In order to obtain nano size cerium oxide from cerium carbonate prepared by reactive crystallization of cerium chloride solution and ammonium bicarnonate solution, the effects of experimental variables in the milling and calcination of cerium carbonate, such as calcination temperature, milling time, rpm of planetary mill, amount of dispersant and ball size for milling on the size of cerium oxide was investigated in this study. Cerium oxide prepared with the conditions of calcination temperature of $700^{\circ}C$, milling time of 5 hour was 160nm mean particle size.

Thermo-mechanical vibration analysis of curved imperfect nano-beams based on nonlocal strain gradient theory

  • Ebrahimi, Farzad;Daman, Mohsen;Mahesh, Vinyas
    • Advances in nano research
    • /
    • v.7 no.4
    • /
    • pp.249-263
    • /
    • 2019
  • In the current paper, an exact solution method is carried out for analyzing the thermo-mechanical vibration of curved FG nano-beams subjected to uniform thermal environmental conditions, by considering porosity distribution via nonlocal strain gradient beam theory for the first time. Nonlocal strain gradient elasticity theory is adopted to consider the size effects in which the stress for not only the nonlocal stress field but also the strain gradients stress field is considered. It is perceived that during manufacturing of functionally graded materials (FGMs) porosities and micro-voids can be occurred inside the material. Material properties of curved porous FG nanobeam are assumed to be temperature-dependent and are supposed to vary through the thickness direction of beam which modeled via modified power-law rule. Since variation of pores along the thickness direction influences the mechanical and physical properties, porosity play a key role in the mechanical response of curved FG nano-structures. The governing equations and related boundary condition of curved porous FG nanobeam under temperature field are derived via the energy method based on Timoshenko beam theory. An analytical Navier solution procedure is utilized to achieve the natural frequencies of porous FG curved nanobeam supposed to thermal loading. The results for simpler states are confirmed with known data in the literature. The effects of various parameters such as nonlocality parameter, porosity volume fractions, thermal effect, gradient index, opening angle and aspect ratio on the natural frequency of curved FG porous nanobeam are successfully discussed. It is concluded that these parameters play key roles on the dynamic behavior of porous FG curved nanobeam. Presented numerical results can serve as benchmarks for future analyses of curve FG nanobeam with porosity phases.

A Fourier sine series solution of static and dynamic response of nano/micro-scaled FG rod under torsional effect

  • Civalek, Omer;Uzun, Busra;Yayli, M. Ozgur
    • Advances in nano research
    • /
    • v.12 no.5
    • /
    • pp.467-482
    • /
    • 2022
  • In the current work, static and free torsional vibration of functionally graded (FG) nanorods are investigated using Fourier sine series. The boundary conditions are described by the two elastic torsional springs at the ends. The distribution of functionally graded material is considered using a power-law rule. The systems of equations of the mechanical response of nanorods subjected to deformable boundary conditions are achieved by using the modified couple stress theory (MCST) and taking the effects of torsional springs into account. The idea of the study is to construct an eigen value problem involving the torsional spring parameters with small scale parameter and functionally graded index. This article investigates the size dependent free torsional vibration based on the MCST of functionally graded nano/micro rods with deformable boundary conditions using a Fourier sine series solution for the first time. The eigen value problem is constructed using the Stokes' transform to deformable boundary conditions and also the convergence and accuracy of the present methodology are discussed in various numerical examples. The small size coefficient influence on the free torsional vibration characteristics is studied from the point of different parameters for both deformable and rigid boundary conditions. It shows that the torsional vibrational response of functionally graded nanorods are effected by geometry, small size effects, boundary conditions and material composition. Furthermore, for all deformable boundary conditions in the event of nano-sized FG nanorods, the incrementing of the small size parameters leads to increas the torsional frequencies.

Antimicrobial Effects of Laundering and Colloidal Silver Treatment on a Cotton Fabric (은 용액 처리와 세탁 조건에 따른 면직물의 항균효과)

  • Chung, Hae-Won;Kim, Mi-Kyung
    • Fashion & Textile Research Journal
    • /
    • v.7 no.3
    • /
    • pp.333-338
    • /
    • 2005
  • We examined the antimicrobial effects of the cotton fabrics which were laundered at different conditions and treated with a colloidal silver solution using Staphylococcus aureus. Colloidal silver solution was made from commercial colloidal silver generator by electrolysis. The fabric which was innoculated and washed with water before drying had no more Staphylococcus aureus, but which was innoculated and dried before washing with detergent solution had lower reduction rate. The fabric washed with oxygen bleach did not have an antimicrobial effect, but rinsed with 0.07% fabric softener showed antimicrobial properties. The fabric rinsed with 0.7ppm colloidal silver solution had better antimicrobial effects. As the treating concentration of silver solution increased, the antimicrobial property of the fabric was increased. The fabric treated with 5% silver solution sustained reflectance and whiteness of untreated fabric. The colloidal silver treated fabric lost antimicrobial property after washing because nano-sized silver particles were located on uneven fiber surface without chemical bonding forces.

Y2O3:Eu Phosphor Particles Prepared by Spray Pyrolysis from Solution Containing Flux and Polymeric Precursor (융제 및 고분자 첨가 용액으로부터 분무 열분해 공정에 의해 합성한 Y2O3:Eu 형광체)

  • Lee, Chang Hee;Jung, Kyeong Youl;Choi, Joong Gill;Kang, Yun Chan
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.80-84
    • /
    • 2005
  • Nano-sized $Y_2O_3:Eu$ phosphor particles were prepared by ultrasonic spray pyrolysis. The effect of polymeric precursor and lithium carbonate flux on the morphology and luminescence characteristics of nano-sized $Y_2O_3:Eu$ phosphor particles was investigated. When using the spray solution containing both the polymeric precursor and the flux, the $Y_2O_3:Eu$ particles with spherical shape and micron size were turned into nano-sized $Y_2O_3:Eu$ phosphor particles during the post-treatment at high temperature. The mean size of $Y_2O_3:Eu$ phosphor particles was affected by the contents of polymeric precursors and lithium carbonate flux, and preparation temperature. The as-prepared particles by spray pyrolysis at high temperature from solution containing high contents of polymeric precursors had good photoluminescence intensity under vacuum ultraviolet after post-treatment above $1,000^{\circ}C$. The prepared nano-sized $Y_2O_3:Eu$ phosphor particles had comparable photoluminescence intensity under vacuum ultraviolet light with that of the commercial $Y_2O_3:Eu$ phosphor particles prepared by solid state reaction method.

Effect of PLGA Scaffold Containing Demineralized Bone Solution for Articular Cartilage Tissue Engineering: In Vitro Test (조직공학적 연골재생을 위한 In Vitro 환경에서의 탈미네랄화 골분용액을 함유한 PLGA 지지체의 효과)

  • Ahn, Woo-Young;Kim, Hye-Lin;Song, Jeong-Eun;Lee, Dong-Won;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.499-504
    • /
    • 2011
  • Articular cartilage has an intrinsic difficulty in recovering damages, which requires its tissue engineering treatment. Demineralized bone particle (DBP) contains various bioactive molecules. It is widely used biomaterials in the field of tissue engineering. We developed the synthetic/natural hybrid scaffolds with poly(lactide-co-glycolide) (PLGA) and solution of DBP. The chondrocytes were seeded on the PLGA-DBP scaffolds and MTT assay, morphological observation, biological assay for collagen, sGAG, and RT-PCR were performed to analyze the effect of the DBP on cell viability and extracellular matrix secretion. In SEM observation, we observed that PLGA-DBP scaffolds had uniform porosity. As MTT assay showed scaffolds containing DB solution had higher cell viability then only PLGA scaffolds. The PLGA-DBP scaffolds had better ECM production than PLGA scaffold. It was proven by the higher specific mRNA expression in the PLGA-DBP scaffold than that in PLGA scaffold. These results indicated that PLGA-DBP scaffolds might serve as potential cell delivery vehicles and structural bases for in vitro tissue engineered articular cartilage.

Preparation of silica-coated gadolinium compound particle colloid solution and its application in imaging

  • Kobayashi, Yoshio;Morimoto, Hikaru;Nakagawa, Tomohiko;Gonda, Kohsuke;Ohuchi, Noriaki
    • Advances in nano research
    • /
    • v.1 no.3
    • /
    • pp.159-169
    • /
    • 2013
  • A preparation method for gadolinium compound (GdC) nanoparticles coated with silica ($GdC/SiO_2$) is proposed. GdC nanoparticles were prepared with a homogeneous precipitation method at $80^{\circ}C$ using $1.0{\times}10^{-3}$ M $Gd(NO_3)_3$, 0.5 M urea and $0-3.0{\times}10^{-4}$ M ethylenediarinnetetraacetic acid disodium salt dihydrate (ETDA) in water. As a result of preparation at various EDTA concentrations, GdC nanoparticles with a size as small as $40.5{\pm}6.2$ nm, which were colloidally stable, were prepared at an EDTA concentration of $2.0{\times}10^{-4}$ M. Silica-coating of the GdC nanoparticles was performed by a St$\ddot{o}$ber method at $35^{\circ}C$ using $1.0-10.0{\times}10^{-3}$ M tetraethylorthosilicate (TEOS), 11 M $H_2O$ and $1.5{\times}10^{-3}$ M NaOH in ethanol in the presence of $1.0{\times}10^{-3}$ M GdC nanoparticles. Performance of preparation at various TEOS concentrations resulted in production of $GdC/SiO_2$ particles with an average size of $106.1{\pm}11.2$ nm at a TEOS concentration of $5.0{\times}10^{-3}$ M. The gadolinium (Gd) concentration of $1.0{\times}10^{-3}$ M in the as-prepared $GdC/SiO_2$ particle colloid solution was increased up to a Gd concentration of 0.2 M by concentrating with centrifugation. The core-shell structure of $GdC/SiO_2$ particles was undamaged, and the colloid solution was still colloidally stable, even after the concentrating process. The concentrated $GdC/SiO_2$ colloid solution showed images of X-ray and magnetic resonance with contrast as high as commercial Gd complex contrast agents.