DOI QR코드

DOI QR Code

Congruent LiNbO3 Crystal Periodically Poled by Applying External Field

외부전계 인가에 의한 조화용융조성 LiNbO3 결정의 주기적 분극반전

  • Kwon, Soon-Woo (Department of Materials Engineering, Hankuk Aviation University) ;
  • Yang, Woo-Seok (Nano Bio-Photonics Team, Korea Electronics Technology Institute) ;
  • Lee, Hyung-Man (Nano Bio-Photonics Team, Korea Electronics Technology Institute) ;
  • Kim, Woo-Kyung (Nano Bio-Photonics Team, Korea Electronics Technology Institute) ;
  • Lee, Han-Young (Nano Bio-Photonics Team, Korea Electronics Technology Institute) ;
  • Yoon, Dae-Ho (Department of Advanced Materials Engineering, Sungkyunkwan University) ;
  • Song, Yo-Seung (Department of Materials Engineering, Hankuk Aviation University)
  • 권순우 (한국항공대학교 항공재료공학과) ;
  • 양우석 (전자부품연구원 나노바이오포토닉스팀) ;
  • 이형만 (전자부품연구원 나노바이오포토닉스팀) ;
  • 김우경 (전자부품연구원 나노바이오포토닉스팀) ;
  • 이한영 (전자부품연구원 나노바이오포토닉스팀) ;
  • 윤대호 (성균관대학교 신소재공학과) ;
  • 송요승 (한국항공대학교 항공재료공학과)
  • Published : 2005.11.01

Abstract

When an electric field higher than a characteristic coercive field is applied to a ferroelectric such as $LiNbO_3$, the orientation of the spontaneous polarization is reversed, which causes the reversal of the sign of odd-rank tensor properties such as electro-optic and nonlinear optic coefficients. A fabrication process of insulator and periodic external field assisted poling of a z-cut $LiNbO_3$ have been optimized for a periodic $180^{\circ}$ phase inversion along z-axis. The poling jig and the poling control system, fully controlled by a computer, for high quality and reproducible PPLN fabrication have been devised. Periodically polarization reversed PPLN was adjusted based on the fabricated thickness of insulator. The poling structure of PPLN was observed under a microscope after etching PPLN samples by an etching solution ($HF:HNO_3$ = 1 : 2) for about 15 min.

Keywords

References

  1. Y. Zhu and N. Ming, 'Second-Harmonic Generation in a Fibonacci Optical Superlattice and the Dispersive Effect of the Refractive Index,' Phys. Rev. B, 42 3676-79 (1990) https://doi.org/10.1103/PhysRevB.42.3676
  2. L. E. Myers, R. C. Eckardt, M. M. Fejer, and R. L. Byer, 'Multigrating Quasi-Phase-Matched Optical Parametric Oscillator in Periodically Poled $LiNbO_3$,' Opt. Lett., 21 591-93 (1996) https://doi.org/10.1364/OL.21.000591
  3. L. E. Myers and W. R. Bosenberg, 'Periodically Poled Lithium Niobate and Quasi-Phase-Matched Optical Parametric Oscillators,' IEEE J Quantum. Electron., 33 1663-72 (1997) https://doi.org/10.1109/3.631262
  4. P. E. Britton, D. Taverner, K. Puech, D. J. Richardson, P. G R. Smith, G. W. Ross, and D. C. Hanna, 'Optical Parametricoscillation in Periodically Poled Lithium Niobate Drivenby a Diode-Pumped Q-switched Erbium Fiber Laser,' Opt. Lett., 23 582-84 (1998) https://doi.org/10.1364/OL.23.000582
  5. J. A. Armstrong, N. Bliembergen, J. Duccing, and P. S. Pershan, 'Interactions between Light waves in a Nonlinear Dielectric,' Phys. Rev., 127 1918-39 (1962) https://doi.org/10.1103/PhysRev.127.1918
  6. M. Nakamura, M. Kotoh, H. Taniguchi, and K. Tadatomo, 'Bulk Periodically Poled MgO-Doped $LiNbO_3$ by External Electric Field Application,' J Appl. Phys., 38 512-14 (1999) https://doi.org/10.1143/JJAP.38.L512
  7. Y. Cho, S. Kazuta, and H. Ito, 'Scanning-Nonlinear-Dielectric-Microscopy Study on Periodically Poled $LiNbO_3$ for a High-Performance Quasi-Phase Matching Device,' Appl. Phys. Lett., 79 2955-57 (2001) https://doi.org/10.1063/1.1414299
  8. B. Vincent, A. Boudrioua, R. Kremer, and P. Moretti, 'Second Harmonic Generation in Helium-Implanted Periodically Poled Lithium Niobate Planar Waveguides,' Opt. Commun., 247 461-69 (2005) https://doi.org/10.1016/j.optcom.2004.11.079