DOI QR코드

DOI QR Code

Preparation of silica-coated gadolinium compound particle colloid solution and its application in imaging

  • Kobayashi, Yoshio (Department of Biomolecular Functional Engineering, College of Engineering, Ibaraki University) ;
  • Morimoto, Hikaru (Department of Biomolecular Functional Engineering, College of Engineering, Ibaraki University) ;
  • Nakagawa, Tomohiko (Department of Nano-Medical Science, Graduate School of Medicine, Tohoku University) ;
  • Gonda, Kohsuke (Department of Nano-Medical Science, Graduate School of Medicine, Tohoku University) ;
  • Ohuchi, Noriaki (Department of Nano-Medical Science, Graduate School of Medicine, Tohoku University)
  • Received : 2012.08.24
  • Accepted : 2013.10.15
  • Published : 2013.09.25

Abstract

A preparation method for gadolinium compound (GdC) nanoparticles coated with silica ($GdC/SiO_2$) is proposed. GdC nanoparticles were prepared with a homogeneous precipitation method at $80^{\circ}C$ using $1.0{\times}10^{-3}$ M $Gd(NO_3)_3$, 0.5 M urea and $0-3.0{\times}10^{-4}$ M ethylenediarinnetetraacetic acid disodium salt dihydrate (ETDA) in water. As a result of preparation at various EDTA concentrations, GdC nanoparticles with a size as small as $40.5{\pm}6.2$ nm, which were colloidally stable, were prepared at an EDTA concentration of $2.0{\times}10^{-4}$ M. Silica-coating of the GdC nanoparticles was performed by a St$\ddot{o}$ber method at $35^{\circ}C$ using $1.0-10.0{\times}10^{-3}$ M tetraethylorthosilicate (TEOS), 11 M $H_2O$ and $1.5{\times}10^{-3}$ M NaOH in ethanol in the presence of $1.0{\times}10^{-3}$ M GdC nanoparticles. Performance of preparation at various TEOS concentrations resulted in production of $GdC/SiO_2$ particles with an average size of $106.1{\pm}11.2$ nm at a TEOS concentration of $5.0{\times}10^{-3}$ M. The gadolinium (Gd) concentration of $1.0{\times}10^{-3}$ M in the as-prepared $GdC/SiO_2$ particle colloid solution was increased up to a Gd concentration of 0.2 M by concentrating with centrifugation. The core-shell structure of $GdC/SiO_2$ particles was undamaged, and the colloid solution was still colloidally stable, even after the concentrating process. The concentrated $GdC/SiO_2$ colloid solution showed images of X-ray and magnetic resonance with contrast as high as commercial Gd complex contrast agents.

Keywords

References

  1. Ayame, T., Kobayashi, Y., Nakagawa, T., Gonda, K., Takeda, M. and Ohuchi, N. (2011), "Preparation of silica-coated AgI nanoparticles by an amine-free process and their X-ray imaging properties", J. Ceram. Soc. Jpn., 119(6), 397-401. https://doi.org/10.2109/jcersj2.119.397
  2. Bagher-Ebadian, H., Paudyal, R., Nagaraja, T.N., Croxen, R.L., Fenstermacher, J.D. and Ewing, J.R. (2011), "MRI estimation of gadolinium and albumin effects on water proton", NeuroImage, 54(1), S176-S179. https://doi.org/10.1016/j.neuroimage.2010.05.032
  3. Bardi, G., Malvindi, M.A., Gherardini, L., Costa, M., Pompa, P.P., Cingolani, R. and Pizzorusso, T. (2010), "The biocompatibility of amino functionalized CdSe/ZnS quantum-dot-Doped $SiO_{2}$ nanoparticles with primary neural cells and their gene carrying performance", Biomater., 31(25), 6555-6566. https://doi.org/10.1016/j.biomaterials.2010.04.063
  4. Besheer, A., Caysa, H., Metz, H., Mueller, T., Kressler, J. and Mäder, K. (2011), "Benchtop-MRI for in vivo imaging using a macromolecular contrast agent based on hydroxyethyl starch (HES)", Int. J. Pharm., 417(1-2), 196-203. https://doi.org/10.1016/j.ijpharm.2010.10.051
  5. Bonvento, M.J., Moore, W.H., Button, T.M., Weinmann, H., Yakupov, R. and Dilmanian, F.A. (2006), "CT angiography with gadolinium-based contrast media", Acad. Radiol., 13(8), 979-985. https://doi.org/10.1016/j.acra.2006.03.019
  6. Carrascosa, P., Capuñay, C., Bettinotti, M., Goldsmit, A., Deviggiano, A., Carrascosa, J. and García, M.J. (2007), "Feasibility of gadolinium-diethylene triamine pentaacetic acid enhanced multidetector computed tomography for the evaluation of coronary artery disease", J. Cardiovasc. Comput. Tomogr., 1(2), 86-94. https://doi.org/10.1016/j.jcct.2007.06.003
  7. Cheung, E.N.M., Alvares, R.D.A., Oakden, W., Chaudhary, R., Hill, M.L., Pichaandi, J., Mo, G.C.H., Yip, C., Macdonald, P.M., Stanisz, G.J., Veggel, F.C.J.M.V., and Prosser, R.S. (2010), "Polymer-stabilized lanthanide fluoride nanoparticle aggregates as contrast agents for magnetic resonance imaging and computed tomography", Chem. Mater., 22(16), 4728-4739. https://doi.org/10.1021/cm101036a
  8. Gauden, A.J., Phal, P.M. and Drummond, K.J. (2010), "MRI safety; nephrogenic systemic fibrosis and other risks", J. Clin. Neurosci., 17(9), 1097-1104. https://doi.org/10.1016/j.jocn.2010.01.016
  9. Guo, L., Guan, A., Lin, X., Zhang, C. and Chen, G. (2010), "Preparation of a new core-shell $Ag@SiO_{2}$ nanocomposite and its application for fluorescence enhancement", Talanta, 82(5), 1696-1700. https://doi.org/10.1016/j.talanta.2010.07.051
  10. Ji, H., Wang, S. and Yang, X. (2009), "Preparation of polymer/silica/polymer tri-layer hybrid materials and the corresponding hollow polymer microspheres with movable cores", Polymer, 50(1), 133-140. https://doi.org/10.1016/j.polymer.2008.10.043
  11. Kobayashi, Y., Imai, J., Nagao, D., Takeda, M., Ohuchi, N., Kasuya, A. and Konno, M. (2007), "Preparation of multilayered silica-Gd-silica core-shell particles and their magnetic resonance images", Colloids Surf. A, 308(1-3), 14-19. https://doi.org/10.1016/j.colsurfa.2007.05.024
  12. Kobayashi, Y., Misawa, K., Takeda, M., Ohuchi, N., Kasuya, A. and Konno, M. (2008), "Preparation and properties of silica-coated AgI nanoparticles with a modified Stöber method", Mater. Res. Soc. Symp. Proc., 1074, I10-07.
  13. Kobayashi, Y., Minato, M., Ihara, K., Sato, M., Suzuki, N., Takeda, M., Ohuchi, N. and Kasuya, A. (2010a), "Synthesis of silica-coated AgI nanoparticles and immobilization of proteins on them", J. Nanosci. Nanotechnol., 10(11), 7758-7761. https://doi.org/10.1166/jnn.2010.2838
  14. Kobayashi, Y., Nozawa, T., Takeda, M., Ohuchi, N. and Kasuya, A. (2010b), "Direct silica-coating of quantum dots", J. Chem. Eng. Jpn., 43(6), 490-493. https://doi.org/10.1252/jcej.43.490
  15. Kobayashi, Y., Nozawa, T., Nakagawa, T., Gonda, K., Takeda, M., Ohuchi, N. and Kasuya, A. (2010c), "Direct coating of quantum dots with silica shell", J. Sol-Gel Sci. Technol., 55(1), 79-85. https://doi.org/10.1007/s10971-010-2218-5
  16. Kobayashi, Y., Inose, H., Nakagawa, T., Gonda, K., Takeda, M., Ohuchi, N. and Kasuya, A. (2011), "Control of shell thickness in silica-coating of Au nanoparticles and their X-ray imaging properties", J. Colloid Interface Sci., 358(2), 329-333. https://doi.org/10.1016/j.jcis.2011.01.058
  17. Kojima, C., Turkbey, B., Ogawa, M., Bernardo, M., Regino, C.A.S., Bryant Jr. L.H., Choyke, P.L., Kono, K. and Kobayashi, H. (2011), "Dendrimer-based MRI contrast agents: the effects of PEGylation on relaxivity and pharmacokinetics", Nanomed. Nanotechnol. Biol. Med., 7(6), 1001-1008. https://doi.org/10.1016/j.nano.2011.03.007
  18. Li, S.Z., Xu, R.K. (2008), "Electrical double layers' interaction between oppositely charged particles as related to surface charge density and ionic strength", Colloids Surf. A, 326(3), 157-161. https://doi.org/10.1016/j.colsurfa.2008.05.023
  19. Liu, Y., Chen, Z., Liu, C., Yu, D., Lu, Z. and Zhang, N. (2011), "Gadolinium-loaded polymeric nanoparticles modified with Anti-VEGF as multifunctional MRI contrast agents for the diagnosis of liver cancer", Biomater., 32(22), 5167-5176. https://doi.org/10.1016/j.biomaterials.2011.03.077
  20. Marshall, G. and Kasap, C. (2012), "Adverse events caused by MRI contrast agents: implications for radiographers who inject", Radiography, 18(2), 132-136. https://doi.org/10.1016/j.radi.2010.09.007
  21. Matijevic, E. and Hsu, W.P. (1987), "Preparation and properties of monodispersed colloidal particles of lanthanide compounds: I. Gadolinium, europium, terbium, samarium, and cerium (III)", J. Colloid Interface Sci., 118(2), 506-523. https://doi.org/10.1016/0021-9797(87)90486-3
  22. Morimoto, H., Minato, M., Nakagawa, T., Sato, M., Kobayashi, Y., Gonda, K., Takeda, M., Ohuchi, N. and Suzuki, N. (2011), "X-ray imaging of newly-developed gadolinium compound/silica core-shell particles", J. Sol-Gel Sci. Technol., 59(3), 650-657. https://doi.org/10.1007/s10971-011-2540-6
  23. Newport, J.P., Dusseault, B.N., Butler, C. and Pais, Jr. V.M. (2008), "Gadolinium-enhanced computed tomography cystogram to diagnose bladder augment rupture in patients with iodine sensitivity", Urol., 71(5), 984.e9-984.e11. https://doi.org/10.1016/j.urology.2007.11.037
  24. Park, Y., Liz-Marzan, L.M., Kasuya, A., Kobayashi, Y., Nagao, D., Konno, M., Mamykin, S., Dmytruk, A., Takeda, M. and Ohuchi, N. (2006), "X-ray absorption of gold nanoparticles with thin silica shell", J. Nanosci. Nanotechnol., 6(11), 3503-3506. https://doi.org/10.1166/jnn.2006.044
  25. Pietsch, H., Jost, G., Frenzel, T., Raschke, M., Walter, J., Schirmer, H., Hutter, J. and Sieber, M.A. (2011), "Efficacy and safety of lanthanoids as X-ray contrast agents", Euro. J. Radiol., 80(2), 349-356. https://doi.org/10.1016/j.ejrad.2009.10.023
  26. Purysko, A.S., Remer, E.M. and Veniero, J.C. (2011), "Focal liver lesion detection and characterization with GD-EOB-DTPA", Clin. Radiol., 66(7), 673-684. https://doi.org/10.1016/j.crad.2011.01.014
  27. Ratzinger, G., Agrawal, P., Körner, W., Lonkai, J., Sanders, H.M.H.F., Terreno, E., Wirth, M., Strijkers, G.J., Nicolay, K. and Gabor, F. (2010), "Surface modification of PLGA nanospheres with Gd-DTPA and Gd-DOTA for high-relaxivity MRI contrast agents", Biomater., 31(33), 8716-8723. https://doi.org/10.1016/j.biomaterials.2010.07.095
  28. Rieter, W.J., Kim, J.S., Taylor, K.M.L., An, H., Lin, W., Tarrant, T. and Lin, W. (2007), "Hybrid silica nanoparticles for multimodal imaging", Angew. Chem. Int. Ed., 46(20), 3680-3682. https://doi.org/10.1002/anie.200604738
  29. Santra, S., Bagwe, R.P., Dutta, D., Stanley, J.T., Walter, G.A., Tan, W., Moudgil, B.M. and Mericle, R.A. (2005), "Synthesis and characterization of fluorescent, radio-opaque, and paramagnetic silica nanoparticles for multimodal bioimaging applications", Adv. Mater., 17(18), 2165-2169. https://doi.org/10.1002/adma.200500018
  30. Singh, G. and Song, L. (2007), "Experimental correlations of pH and ionic strength effects on the colloidal fouling potential of silica nanoparticles in crossflow ultrafiltration", J. Memb. Sci., 303(1-2), 112-118. https://doi.org/10.1016/j.memsci.2007.06.072
  31. Tamada, T., Ito, K., Higaki, A., Yoshida, K., Kanki, A., Sato, T., Higashi, H. and Sone, T. (2011), "Gd-EOB-DTPA-enhanced MR imaging: Evaluation of hepatic enhancement effects in normal and cirrhotic livers", Euro. J. Radiol., 80(3), e311-e316. https://doi.org/10.1016/j.ejrad.2011.01.020
  32. Wang, L., Neoh, K.G., Kang, E. and Shuter, B. (2011), "Multifunctional polyglycerol-grafted $Fe_{3}O_{4}@SiO_{2}$ nanoparticles for targeting ovarian cancer cells", Biomater., 32(8), 2166-2173. https://doi.org/10.1016/j.biomaterials.2010.11.042
  33. Wang, Y., Bai, X., Liu, T., Dong, B., Xu, L., Liu, Q. and Song, H. (2010), "Solvothermal synthesis and luminescence properties of monodisperse $Gd_{2}O_{3}:Eu^{3+}$ and $Gd_{2}O_{3}:Eu^{3+}@SiO_{2}$ nanospheres", J. Solid State Chem., 183(12), 2779-2785. https://doi.org/10.1016/j.jssc.2010.09.002
  34. Xu, F., Han, H., Zhang, H., Pi, J. and Fu, Y. (2011), "Quantification of Gd-DTPA concentration in neuroimaging using T1 3D MP-RAGE sequence at 3.0 T", Magn. Reson. Imaging, 29(6), 827-834. https://doi.org/10.1016/j.mri.2011.02.019
  35. Yilmaz, H., Sato, K. and Watari, K. (2007), "AFM interaction study of $\alpha$-alumina particle and c-sapphire surfaces at high-ionic-strength electrolyte solutions", J. Colloid Interface Sci., 307(1), 116-123. https://doi.org/10.1016/j.jcis.2006.11.010
  36. Yim, H., Yang, S.G., Jeon, Y.S., Park, I.S., Kim, M., Lee, D.H., Bae, Y.H. and Na, K. (2011), "The performance of gadolinium diethylene triamine pentaacetate-pullulan hepatocyte-specific T1 contrast agent for MRI", Biomater., 32(22), 5187-5194. https://doi.org/10.1016/j.biomaterials.2011.03.069

Cited by

  1. Fabrication of gadolinium hydroxide nanoparticles using ion-exchange resin and their MRI property vol.4, pp.1, 2016, https://doi.org/10.1016/j.jascer.2016.01.005
  2. Enhanced biosafety of silica coated gadolinium based nanoparticles vol.28, pp.3, 2017, https://doi.org/10.1007/s10856-017-5855-1
  3. Fabrication of nitrogen-doped titanium oxide/silica core–shell particles and their electrical conductivity vol.457, 2014, https://doi.org/10.1016/j.colsurfa.2014.05.073
  4. Fabrication of multilayered Au/silica/gadolinium compound core–shell particles and their imaging properties vol.33, pp.8, 2017, https://doi.org/10.1080/02670836.2016.1246120