• 제목/요약/키워드: Nano solution

Search Result 1,208, Processing Time 0.025 seconds

Effect of Austenitizing Ratio on the Delta Ferrite Volume Fraction and Corrosion Resistance of Shell Mold Cast SSC13 Elbow Fitting (셀 몰드 주조한 SSC13 엘보우 피팅 주강의 고용화율에 따른 델타 페라이트 분율 변화와 내부식특성)

  • Kim, Kuk-Jin;Lim, Su-Gun;Ju, Heong-kyu;Pak, Sung-Joon
    • Journal of Korea Foundry Society
    • /
    • v.35 no.5
    • /
    • pp.109-113
    • /
    • 2015
  • In this study, the measurement of FN (ferrite volume fraction) and the solution annealing ratio at a temperature of $1130^{\circ}C$ were determined with 15A elbow fittings of shell cast SSC13, and the corrosion resistance with and without austenitizing solution annealing were investigated in comparison with AISI304. The delta ferrite phase was observed in the material due to the slow cooling effect of the shell mold casting. However, the delta ferrite phase decreased gradually with the solution annealing at a temperature of $1130^{\circ}C$. The hardness generally decreased with a heat treatment; however, its corrosion resistance was improved with the heat treatment. In addition, when a passivation treatment was applied, its corrosion ratio showed the lowest value. The pattern of general corrosion decreased due to the decrease in the delta ferrite phase with the solution annealing treatment. Consequently, it is suggested that the corrosion resistance of SSC13 elbow fittings can be improved by increasing the ratio of any solution annealing treatment used and by decreasing the ferrite phase. The relationship between the ratio of solution annealing and delta ferrite is expressed as follows: SA (solution annealing ratio,%) = 98 - FN (ferrite volume fraction, %).

Fabrication of Double-layered ZnO Nanostructures by an Aqueous Solution Growth (수용액 합성법에 의한 ZnO 이중 나노구조물의 합성)

  • Chae, Ki-Woong;Kim, Jeong-Seog;Cao, Guozhong
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.596-601
    • /
    • 2009
  • Double-layered ZnO nanostructures have been synthesized by aqueous solution method on (001) plane of ZnO nanorod. A stepwise changing of aqueous solution concentration gave rise to a new nano-structured layer consisting of either multiple of nanorods or nanowires with much smaller radii than that of the ZnO nanorod on which the new layer was grown. As the first step the ZnO nanorods have been grown to have the (001) preferential orientation in the aqueous solution consisting of 0.1M zinc nitrate and 0.1 M HMT. This preferentially aligned ZnO nanorods have been regrown in either a less diluted solution of 0.01M zinc nitrate and 0.01 M HMT or a more diluted solution of 0.005M zinc nitrate and 0.01 M HMT. A new nano-layer consisting of numerous aligned nanorods or nanowires has been produced on the (001) planes of ZnO nanorods. The growth mechanism for this double layered ZnO nanostructure is ascribed to the (001) polar surface energy instability and inhibition of (001) plane growth due to the step-wise change of aqueous solution concentration; ZnO nuclei formed on the (001) plane grow preferentially in (010) plane instead of (001) plane to reduce the total surface energy. Surface area of ZnO nanostructure can be increased in orders of magnitudes by forming a new layer consisting of smaller nanorods/nanowires on (001) plane of ZnO nanorods.

Fabrication of a Graphene Nanoribbon with Electron Beam Lithography Using a XR-1541/PMMA Lift-Off Process

  • Jeon, Sang-Chul;Kim, Young-Su;Lee, Dong-Kyu
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.4
    • /
    • pp.190-193
    • /
    • 2010
  • This report covers an effective fabrication method of graphene nanoribbon for top-gated field effect transistors (FETs) utilizing electron beam lithography with a bi-layer resists (XR-1541/poly methtyl methacrylate) process. To improve the variation of the gating properties of FETs, the residues of an e beam resist on the graphene channel are successfully taken off through the combination of reactive ion etching and a lift-off process for the XR-1541 bi-layer. In order to identify the presence of graphene structures, atomic force microscopy measurement and Raman spectrum analysis are performed. We believe that the lift-off process with bi-layer resists could be a good solution to increase gate dielectric properties toward the high quality of graphene FETs.

Fabrication of Alumina Free-standing Objects by Electrophoretic Deposition

  • Uchikoshi, Tetsuo;Furumi, Seiichi;Suzuki, Tohru S.;Sakka, Yoshio
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1107-1108
    • /
    • 2006
  • The coating of conductive polypyrrole (Ppy) on nonconductive ceramic substrates was performed by polymerization of pyrrole (Py) in an aqueous solution. The Ppy film was characterized by scanning electron microscopy and conductivity measurements. Electrophoretic deposition of bimodal alumina suspension prepared with a phosphate ester was performed using Ppy film as a cathode. Fabrication of alumina ceramics with irregular shapes or complicated patterns were also attempted by sintering the deposits together with the Ppy coated substrates in air.

  • PDF

Design and Synthesis of New Fluorene-Based Blue Light Emitting Polymer Containing Electron Donating Alkoxy Groups and Electron Withdrawing Oxadiazole

  • Kim, Yun-Hi;Park, Sung-Jin;Park, Jong-Won;Kim, Jin-Hak;Kwon, Soon-Ki
    • Macromolecular Research
    • /
    • v.15 no.3
    • /
    • pp.216-220
    • /
    • 2007
  • A new polyfluorene-based copolymer having 2-ethylhexyloxy-5-methoxy-l,4-phenylene as an electron donating group and 2,5-diphenyl-oxadiazole as an electron withdrawing group was synthesized by the Suzuki coupling reaction. The obtained copolymer was characterized by $^1H-NMR,\;^{13}C-NMR$, and IR-spectroscopy. The weight average molecular weight ($M_w$) of the obtained polymer was 18,600 with a polydispersity index of 1.5. The maximum photoluminescence of the solution and film of the polymer was observed at 453 nm and 456 nm, respectively. A double-layer device with the configuration, ITO/PEDOT/copolymer/Al, emitted blue light at 460 nm.

Bishop theory and longitudinal vibration of nano-beams by two-phase local/nonlocal elasticity

  • Reza Nazemnezhad;Roozbeh Ashrafian;Alireza Mirafzal
    • Advances in nano research
    • /
    • v.15 no.1
    • /
    • pp.75-89
    • /
    • 2023
  • In this paper, Bishop theory performs longitudinal vibration analysis of Nano-beams. Its governing equation, due to integrated displacement field and more considered primarily effects compared with other theories, enjoys fully completed status, and more reliable results as well. This article aims to find how Bishop theory and Two-phase elasticity work together. In other words, whether Bishop theory will be compatible with Two-phase local/nonlocal elasticity. Hamilton's principle is employed to derive governing equation of motion, and then the 6th order of Generalized Differential Quadrature Method (GDQM) as a constructive numerical method is utilized to attain the discretized two-phase formulation. To acquire a proper verification procedure, exact solution is prepared to be compared with current results. Furthermore, the effects of key parameters on the objective are investigated.

Experimental investigation of mechanical and microstructural properties of concrete containing modified nano-Graphene Oxide

  • Maryam Ashouri;Ehsanollah Zeighami;Alireza Azarioon;Seyyed Mohammad Mirhosseini;Sattar Ebrahimi Yonesi
    • Advances in nano research
    • /
    • v.16 no.5
    • /
    • pp.435-444
    • /
    • 2024
  • Microscopic defects within the microstructure of hardened cement paste are the main source of weakness in concrete. As a solution, nano-graphene oxide (GO) can be employed to improve the cement paste microstructure. However, there is a number of disadvantages, e.g., fluidity reduction and non-uniform dispersion. The present study sought to modify GO by fabricating a copolymer (PSGO) in a novel process to exploit the advantages of nano-GO while minimizing its disadvantages. Using 0.03wt% copolymerled to 38.8% higher tensile strength, 29.3% higher compressive strength and 25% higher workability. The SEM images revealed that GO and modified GO enhanced concrete by secondary hydration and bonding with C-S-H, creating a firm, integrated, and foil-like structure, and reducing the crack size and depth.

Synthesis of ZnS : Cu nano-crystals and structural and optical properties (ZnS : Cu nano 업자의 합성 및 구조적.광학적 특성)

  • 이종원;이상욱;조성룡;김선태;박인용;최용대
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.3
    • /
    • pp.138-143
    • /
    • 2002
  • In this study, ZnS: Cu nano-crystals are synthesized by solution synthesis technique (SST). The structural properties such as crystal structure and particle morphology, and the optical properties such as light absorption/transmittance, energy bandgap, and photoluminescence (PL) excitation/emission are investigated. In an attempt to realize the Cu-doping easiness, the synthesis temperature (~$80^{\circ}C$) is applied to the synthesis bath, and the thiourea is used as sulfur precursor, unlike other general chemical synthesis route. Both undoped ZnS and ZnS : Cu nano-crystals have the cubic crystal structure and have the spherical particle shape. The position of light absorption edge is ~305 nm, indicating the occurrence of quantum size effect. The PL emission intensity and line-width are maximum and minimum, respectively, for Cu-doping concentration 0.03M. In particular, the dependence of PL intensity and line-width on the Cu-doping concentration for ZnS : Cu nano-crystals synthesized by SST is reported for the first time in this study. Experimental results of the absorption edge and the PL excitation show that the main emission peak of ZnS : Cu nano-crystals (~510 nm) in this study is due to the radiative recombination center in the energy bandgap induced by Cu dopant.

Preparation, Characterizations and Conductivity of Composite Polymer Electrolytes Based on PEO-LiClO4 and Nano ZnO Filler

  • ElBellihi, Abdelhameed Ahmed;Bayoumy, Wafaa Abdallah;Masoud, Emad Mohamed;Mousa, Mahmoud Ahmed
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.2949-2954
    • /
    • 2012
  • Nano ZnO with an average size of 8 nm was prepared by thermal decomposition of zinc oxalate at $450^{\circ}C$. A series of based composite polymer electrolyte PEO-$LiClO_4$ and nano ZnO as a filler have been synthesized using solution cast technique, with varying the filler ratio systematically. XRD, DSC and FTIR studies have been conducted to investigate the structure and interaction of different groups in the composite polymer electrolyte. Effect of nano ZnO ceramic filler concentration on the structure of composites and their electrical properties (DC-conductivity, AC-conductivity, dielectric constant, dielectric loss and impedance) at different frequencies and temperatures was studied. Melting temperature ($T_m$) of PEO decreased with the addition of both $LiClO_4$ salt and nano ZnO filler due to increasing the amorphous state of polymer. All composite samples showed an ionic conductivity. The maximum room temperature ionic conductivity is found for $(ZnO)_{0.5}(PEO)_{12}(LiClO_4)$ composite sample. All the results are correlated and discussed.

The Selective Leaching of Al-Ni Alloy Nano Powders Prepared by Electrical Wire Explosion (전기선 폭발법에 의하여 제조된 Al-Ni 합금 나노분말의 선택적 침출)

  • Park, Je-Shin;Kim, Won-Baek;Suh, Chang-Youl;Chang, Han-Kwon;Ahn, Jong-Gwan;Kim, Byoung-Kyu
    • Journal of Powder Materials
    • /
    • v.15 no.4
    • /
    • pp.308-313
    • /
    • 2008
  • Al-Ni alloy nano powders have been produced by the electrical explosion of Ni-plated Al wire. The porous nano particles were prepared by leaching for Al-Ni alloy nano powders in 20wt% NaOH aqueous solution. The structural properties of leached porous nano powder were investigated by nitrogen physisorption, X-ray diffraction (XRD) and transmission Microscope (TEM). The surface areas of the leached powders were increased with amounts of AI in alloys. The pore size distributions of these powders were exhibited maxima at range of pore diameters 3.0 to 3.5 nm from the desorption isotherm. The maximum values of those were decreased with amounts of Al in alloys.