Browse > Article
http://dx.doi.org/10.4191/KCERS.2009.46.6.596

Fabrication of Double-layered ZnO Nanostructures by an Aqueous Solution Growth  

Chae, Ki-Woong (Department of Materials Science and Engineering, Hoseo University)
Kim, Jeong-Seog (Department of BK21 Semiconductor & Display Engineering, Hoseo University)
Cao, Guozhong (Department of Materials Science and Engineering, University of Washington)
Publication Information
Abstract
Double-layered ZnO nanostructures have been synthesized by aqueous solution method on (001) plane of ZnO nanorod. A stepwise changing of aqueous solution concentration gave rise to a new nano-structured layer consisting of either multiple of nanorods or nanowires with much smaller radii than that of the ZnO nanorod on which the new layer was grown. As the first step the ZnO nanorods have been grown to have the (001) preferential orientation in the aqueous solution consisting of 0.1M zinc nitrate and 0.1 M HMT. This preferentially aligned ZnO nanorods have been regrown in either a less diluted solution of 0.01M zinc nitrate and 0.01 M HMT or a more diluted solution of 0.005M zinc nitrate and 0.01 M HMT. A new nano-layer consisting of numerous aligned nanorods or nanowires has been produced on the (001) planes of ZnO nanorods. The growth mechanism for this double layered ZnO nanostructure is ascribed to the (001) polar surface energy instability and inhibition of (001) plane growth due to the step-wise change of aqueous solution concentration; ZnO nuclei formed on the (001) plane grow preferentially in (010) plane instead of (001) plane to reduce the total surface energy. Surface area of ZnO nanostructure can be increased in orders of magnitudes by forming a new layer consisting of smaller nanorods/nanowires on (001) plane of ZnO nanorods.
Keywords
ZnO; Crystal growth; Nanostructure; Aqueous solution;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 D. S. Boyle, K. Govender, and P. O'Brien, “Novel Low Temperature Solution Deposition of Perpendicularly Oriented Rods of ZnO: Substrate Effects and Evidence of the Importance of Counter-ions in the Control of Crystalline Growth,” Chem. Commun., 80-81 (2002)   DOI   ScienceOn
2 B. Liu and H. C. Zeng, “Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm,” J. Am. Chem. Soc., 125 4430-31 (2003)   DOI   ScienceOn
3 X. Feng, L. Feng, M. Jin, J. Zhai, L. Jiang, and D. Zhu, “Reversible Super-hydrophobicity to Super Hydrophilicity Transition of Aligned ZnO Nanorod Films,” J. Am. Chem. Soc., 126 62-3 (2004)   DOI   ScienceOn
4 Y. Sun, G. M. Fuge, N. A. Fox, D. J. Rily, and M. N. R. Ashfold, “Synthesis of Aligned Arrays of Ultrathin ZnO Nanotubes on a Si Wafer Coated with a Thin ZnO Film,” Adv. Mater., 17 2477-81 (2005)   DOI   ScienceOn
5 Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, and R. P. H. Chang, “Fabrication of ZnO Nanorods and Nanotubes in Aqueous Solution,” Chem. Mater., 17 1001-06 (2005)   DOI   ScienceOn
6 H. T. Ng, J. Li, M. K. Smith, P. Nguyen, A. Cassell, J. Han, and M. Meyyappan, “Growth of Epitaxial Nanowires at the Junction of Nanowalls,” Science, 300 1249 (2003)   DOI   ScienceOn
7 L. Vayssiers, K. Keis, S. E. Lindquist, and A. Hagfeldt, “Purpose Built Anisotropic Metal Oxide Material : 3D Highly Oriented Microrod Array of ZnO,” J. Phys. Chem., B 105 3350-52 (2001)   DOI   ScienceOn
8 Y. J. Kim, H. Shang, and G. Cao, “Growth and Characterization of [001] ZnO Nanorod Array on ITO Substrate with Electric Field Assisted Nucleation,” J. Sol-Gel Sci. Tech., 38 79-84 (2006)   DOI   ScienceOn
9 A. Sugunam, H. C. Warad, M. Boman, and J. Dutta, “Zinc Oxide Nanowires in Chemical Bath on Seeded Substrate: Role of Hexamine,” J. Sol-Gel Sci. Techn., 39 49-56 (2006)   DOI   ScienceOn
10 J. Y. Lao, J. Y. Huang, D. Z. Wang, Z. F. Ren, D. Steeves, B. Kimball, and W. Porter “ZnO Nanowalls,” Appl. Phys. A., 78 539-42 (2004)   DOI   ScienceOn
11 X. Kong, X. Sun, X. Li, and Y. Li, “Catalytic Growth of ZnO Nanotubes,” Mater. Chem. and Phys., 82 997-1001 (2003)   DOI   ScienceOn
12 Y. J. Kim, G. Cao, Y. C. Kim, S. J. Ahn, and J. W. Min, “Fabrication of 2-Dimensional ZnO Nanowall Structure,” J. Ceram. Soc., 42 [7] 521-24 (2005)   과학기술학회마을   DOI   ScienceOn
13 L. Vayssieres, K. Keis, A. Hagfeldt, and S. E. Lindquist, “Three Dimensional Array of Highly Oriented Crystalline ZnO Microtubes,” Chem. Mater., 13 4395-98 (2001)   DOI   ScienceOn
14 H. Yu, Z. Zhang, M. Han, X. Hao, and F. Zhu, “A General Low-temperature Route for Large-scale Fabrication of Highly Oriented ZnO Nanorod/nanotube Arrays,” J. Am. Chem. Soc., 127 2378-79 (2005)   DOI   ScienceOn
15 K. W. Chae, J. S. Kim, and G. Cao, “Controlled Growth of ZnO Nanotubular Structure by a Two-step Thermal Aging in Aqueous Solution,” submitted to GJ-NST 2009 (2009)
16 K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Sugihara, and H. Arakawa, “Highly Efficient Photon-to-electron Conversion with Mercurochrome-sensitized Nanoporous Oxide Semiconductor Solar Cells,” Sol. Energy Mater. Sol. Cell, 64 [2] 115-34 (2000)   DOI   ScienceOn
17 K. Keis, E. Magnusson, H. Lindstrom, S. E. Lindquist, and A. Hagfeldt, “A 5% Efficient Photoelectrochemical Solar Cell Based on Nanostructured ZnO Electrodes,” Sol. Energy Mater. Sol. Cells, 73 51-8 (2002)   DOI   ScienceOn
18 S. Liang, H. Sheng, Y. Liu, Z. Hio, Y. Lu, and H. Shen, “ZnO Schottky Ultraviolet Photodetectors,” J. Cryst. Grow., 225 110-13 (2001)   DOI   ScienceOn
19 N. Golego, S. A. Studenikin, and M. Cocivera, “Sensor Photoresponse of Thin-film Oxides of Zinc and Titanium to Oxygen Gas,” J. Electrochem. Soc., 147 1592-94 (2000)   DOI   ScienceOn
20 H. Yumoto, T. Inoue, S. J. Li, T. Sako, and K. Nishiyama, “Application of ITO Films to Photocatalysis,” Thin Soild Films, 345 38-41 (1999)   DOI   ScienceOn
21 Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, M. J. Mcdermott, M. A. Rodriguez, H. Konishi, and H. Xu, “Complex and Oriented ZnO Nanostructures,” Nat. Mater, 2 821-26 (2003)   DOI   ScienceOn