DOI QR코드

DOI QR Code

Fabrication of Double-layered ZnO Nanostructures by an Aqueous Solution Growth

수용액 합성법에 의한 ZnO 이중 나노구조물의 합성

  • Chae, Ki-Woong (Department of Materials Science and Engineering, Hoseo University) ;
  • Kim, Jeong-Seog (Department of BK21 Semiconductor & Display Engineering, Hoseo University) ;
  • Cao, Guozhong (Department of Materials Science and Engineering, University of Washington)
  • 채기웅 (호서대학교 신소재공학과) ;
  • 김정석 (호서대학교 BK21 대학원 반도체디스플레이공학과) ;
  • Published : 2009.11.30

Abstract

Double-layered ZnO nanostructures have been synthesized by aqueous solution method on (001) plane of ZnO nanorod. A stepwise changing of aqueous solution concentration gave rise to a new nano-structured layer consisting of either multiple of nanorods or nanowires with much smaller radii than that of the ZnO nanorod on which the new layer was grown. As the first step the ZnO nanorods have been grown to have the (001) preferential orientation in the aqueous solution consisting of 0.1M zinc nitrate and 0.1 M HMT. This preferentially aligned ZnO nanorods have been regrown in either a less diluted solution of 0.01M zinc nitrate and 0.01 M HMT or a more diluted solution of 0.005M zinc nitrate and 0.01 M HMT. A new nano-layer consisting of numerous aligned nanorods or nanowires has been produced on the (001) planes of ZnO nanorods. The growth mechanism for this double layered ZnO nanostructure is ascribed to the (001) polar surface energy instability and inhibition of (001) plane growth due to the step-wise change of aqueous solution concentration; ZnO nuclei formed on the (001) plane grow preferentially in (010) plane instead of (001) plane to reduce the total surface energy. Surface area of ZnO nanostructure can be increased in orders of magnitudes by forming a new layer consisting of smaller nanorods/nanowires on (001) plane of ZnO nanorods.

Keywords

References

  1. L. Vayssiers, K. Keis, S. E. Lindquist, and A. Hagfeldt, “Purpose Built Anisotropic Metal Oxide Material : 3D Highly Oriented Microrod Array of ZnO,” J. Phys. Chem., B 105 3350-52 (2001) https://doi.org/10.1021/jp010026s
  2. D. S. Boyle, K. Govender, and P. O'Brien, “Novel Low Temperature Solution Deposition of Perpendicularly Oriented Rods of ZnO: Substrate Effects and Evidence of the Importance of Counter-ions in the Control of Crystalline Growth,” Chem. Commun., 80-81 (2002) https://doi.org/10.1039/b110079n
  3. B. Liu and H. C. Zeng, “Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm,” J. Am. Chem. Soc., 125 4430-31 (2003) https://doi.org/10.1021/ja0299452
  4. X. Feng, L. Feng, M. Jin, J. Zhai, L. Jiang, and D. Zhu, “Reversible Super-hydrophobicity to Super Hydrophilicity Transition of Aligned ZnO Nanorod Films,” J. Am. Chem. Soc., 126 62-3 (2004) https://doi.org/10.1021/ja038636o
  5. Y. J. Kim, H. Shang, and G. Cao, “Growth and Characterization of [001] ZnO Nanorod Array on ITO Substrate with Electric Field Assisted Nucleation,” J. Sol-Gel Sci. Tech., 38 79-84 (2006) https://doi.org/10.1007/s10971-006-5731-9
  6. A. Sugunam, H. C. Warad, M. Boman, and J. Dutta, “Zinc Oxide Nanowires in Chemical Bath on Seeded Substrate: Role of Hexamine,” J. Sol-Gel Sci. Techn., 39 49-56 (2006) https://doi.org/10.1007/s10971-006-6969-y
  7. H. T. Ng, J. Li, M. K. Smith, P. Nguyen, A. Cassell, J. Han, and M. Meyyappan, “Growth of Epitaxial Nanowires at the Junction of Nanowalls,” Science, 300 1249 (2003) https://doi.org/10.1126/science.1082542
  8. J. Y. Lao, J. Y. Huang, D. Z. Wang, Z. F. Ren, D. Steeves, B. Kimball, and W. Porter “ZnO Nanowalls,” Appl. Phys. A., 78 539-42 (2004) https://doi.org/10.1007/s00339-003-2391-2
  9. Y. J. Kim, G. Cao, Y. C. Kim, S. J. Ahn, and J. W. Min, “Fabrication of 2-Dimensional ZnO Nanowall Structure,” J. Ceram. Soc., 42 [7] 521-24 (2005) https://doi.org/10.4191/KCERS.2005.42.7.521
  10. L. Vayssieres, K. Keis, A. Hagfeldt, and S. E. Lindquist, “Three Dimensional Array of Highly Oriented Crystalline ZnO Microtubes,” Chem. Mater., 13 4395-98 (2001) https://doi.org/10.1021/cm011160s
  11. H. Yu, Z. Zhang, M. Han, X. Hao, and F. Zhu, “A General Low-temperature Route for Large-scale Fabrication of Highly Oriented ZnO Nanorod/nanotube Arrays,” J. Am. Chem. Soc., 127 2378-79 (2005) https://doi.org/10.1021/ja043121y
  12. Y. Sun, G. M. Fuge, N. A. Fox, D. J. Rily, and M. N. R. Ashfold, “Synthesis of Aligned Arrays of Ultrathin ZnO Nanotubes on a Si Wafer Coated with a Thin ZnO Film,” Adv. Mater., 17 2477-81 (2005) https://doi.org/10.1002/adma.200500726
  13. Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, and R. P. H. Chang, “Fabrication of ZnO Nanorods and Nanotubes in Aqueous Solution,” Chem. Mater., 17 1001-06 (2005) https://doi.org/10.1021/cm048144q
  14. X. Kong, X. Sun, X. Li, and Y. Li, “Catalytic Growth of ZnO Nanotubes,” Mater. Chem. and Phys., 82 997-1001 (2003) https://doi.org/10.1016/j.matchemphys.2003.09.004
  15. K. W. Chae, J. S. Kim, and G. Cao, “Controlled Growth of ZnO Nanotubular Structure by a Two-step Thermal Aging in Aqueous Solution,” submitted to GJ-NST 2009 (2009)
  16. K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Sugihara, and H. Arakawa, “Highly Efficient Photon-to-electron Conversion with Mercurochrome-sensitized Nanoporous Oxide Semiconductor Solar Cells,” Sol. Energy Mater. Sol. Cell, 64 [2] 115-34 (2000) https://doi.org/10.1016/S0927-0248(00)00065-9
  17. K. Keis, E. Magnusson, H. Lindstrom, S. E. Lindquist, and A. Hagfeldt, “A 5% Efficient Photoelectrochemical Solar Cell Based on Nanostructured ZnO Electrodes,” Sol. Energy Mater. Sol. Cells, 73 51-8 (2002) https://doi.org/10.1016/S0927-0248(01)00110-6
  18. N. Golego, S. A. Studenikin, and M. Cocivera, “Sensor Photoresponse of Thin-film Oxides of Zinc and Titanium to Oxygen Gas,” J. Electrochem. Soc., 147 1592-94 (2000) https://doi.org/10.1149/1.1393400
  19. H. Yumoto, T. Inoue, S. J. Li, T. Sako, and K. Nishiyama, “Application of ITO Films to Photocatalysis,” Thin Soild Films, 345 38-41 (1999) https://doi.org/10.1016/S0040-6090(99)00094-2
  20. S. Liang, H. Sheng, Y. Liu, Z. Hio, Y. Lu, and H. Shen, “ZnO Schottky Ultraviolet Photodetectors,” J. Cryst. Grow., 225 110-13 (2001) https://doi.org/10.1016/S0022-0248(01)00830-2
  21. Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, M. J. Mcdermott, M. A. Rodriguez, H. Konishi, and H. Xu, “Complex and Oriented ZnO Nanostructures,” Nat. Mater, 2 821-26 (2003) https://doi.org/10.1038/nmat1014