• Title/Summary/Keyword: Nano solution

Search Result 1,208, Processing Time 0.029 seconds

Preparation and Sintering Behavior of Monodispersed Alumina-Zirconia Fine Powders (단분산 $Al_2O_3-ZrO_2$ 복합분말의 합성과 소결특성)

  • 부재필;송용원;최상홀
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.10
    • /
    • pp.1209-1217
    • /
    • 1994
  • Monodispersed alumina-zirconia fine powders were prepared by controlled hydrolysis of alkoxides. These powders and the sintered bodies were characterized. Aluminium alkoxide and zirconium alkoxide were dissolved into complex solvent with butanol and n-propanol, and by acetonitrile added hydrolytic solution, hydrolysis rate was controlled. The oil, as a dispersant, was added in hydrolytic solution, and then prepared powders were nano-sized and well-monodispersed. In the case of hydroxypropyl celluose (HPC) as a dispersant, it was added in complex solution with butanol and iso-propanol, sub-micrometer sized and well-monodispersed powders could be prepared. The value of relative density (R.D.) and tetragonal phase fraction of zirconia in the sintered body made by nano-meter sized powders were respectively higher than those in the case of sub-micrometer sized one.

  • PDF

A Reliability Test for ph-free SnCu Plating Solution and It's Deposit (Sn-Cu 무연 도금용액 및 피막의 신뢰성평가)

  • Lee Hong-Kee;Hur Jin-Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.6
    • /
    • pp.216-226
    • /
    • 2005
  • Pb-Free Technology was born with environmental problems of electronic component, Being connected by big and small project of every country. Also, in each country environment is connected and various standards of IEC, ISO, MIL, JIS, KS, JEDEC, EIAJ etc. All products can divide at solder part and finishing part These can tested each and synthetically divide. This research is reliability evaluation for three kind of ph-free SnCu solder plating solution and it's deposit. First, executed analysis about Pure Sn, SnCu solutions and plating surface by way similar to other plating solution analysis. Next, executed reliability about test method and equipment for reliable analyzer system construction. Next, data comparison and estimation, main estimation test method and item's choice. In this paper the systematic surface analysis and reliability for plating solutions and it's deposit in metal surface finishing processes could be shown.

Synthesis and Characterization of Glold Nanofluid Prepared by the Solution Plasma Processing (용액 플라즈마 공정을 이용하여 제조된 금 나노유체의 특성평가)

  • Heo, Yong-Kang;Lee, Sang-Yul
    • Journal of Powder Materials
    • /
    • v.17 no.4
    • /
    • pp.342-346
    • /
    • 2010
  • In the present work, water-based gold nanofluids were synthesized by the solution plasma processing (SPP). The size distribution and the shape of gold nanoparticles in the nanofluids were investigated using high resolution transmission electron microscopy (HR-TEM). The dispersion stability of gold nanofluids was characterized using zeta potential, as well. The thermal properties of gold nanofluids were measured by utilizing lambda measurement device. Nanofluids containing nanoparticles with $64.0{\pm}42.1\;nm{\sim}18.10{\pm}5.0\;nm$ in diameter were successfully synthesized. As diameter of nanoparticles decreased, dispersion stability of nanofluids increased and the enhanced ratio of thermal conductivity increased. The nanofluid with nanoparticles of $18.10\;{\pm}\;5.0\;nm$ in diameter showed approximately 3% improvement in thermal conductivity measurement and this could be due to the enhanced Brownian movement.

Synthesis of metallic copper nanoparticles and metal-metal bonding process using them

  • Kobayashi, Yoshio;Nakazawa, Hiroaki;Maeda, Takafumi;Yasuda, Yusuke;Morita, Toshiaki
    • Advances in nano research
    • /
    • v.5 no.4
    • /
    • pp.359-372
    • /
    • 2017
  • Metallic copper nanoparticles were synthesised by reduction of copper ions in aqueous solution, and metal-metal bonding by using the nanoparticles was studied. A colloid solution of metallic copper nanoparticles was prepared by mixing an aqueous solution of $CuCl_2$ (0.01 M) and an aqueous solution of hydrazine (reductant) (0.2-1.0 M) in the presence of 0.0005 M of citric acid and 0.005 M of n-hexadecyltrimethylammonium bromide (stabilizers) at reduction temperature of $30-80^{\circ}C$. Copper-particle size varied (in the range of ca. 80-165 nm) with varying hydrazine concentration and reduction temperature. These dependences of particle size are explained by changes in number of metallic-copper-particle nuclei (determined by reduction rate) and changes in collision frequency of particles (based on movement of particles in accordance with temperature). The main component in the nanoparticles is metallic copper, and the metallic-copper particles are polycrystalline. Metallic-copper discs were successfully bonded by annealing at $400^{\circ}C$ and pressure of 1.2 MPa for 5 min in hydrogen gas with the help of the metalli-ccopper particles. Shear strength of the bonded copper discs was then measured. Dependences of shear strength on hydrazine concentration and reduction temperature were explained in terms of progress state of reduction, amount of impurity and particle size. Highest shear strength of 40.0 MPa was recorded for a colloid solution prepared at hydrazine concentration of 0.8 M and reduction temperature of $50^{\circ}C$.

Recovery of Nickel from Waste Iron-Nickel Alloy Etchant and Fabrication of Nickel Powder (에칭 폐액으로부터 용매추출과 가수분해를 이용한 니켈분말제조에 관한 연구)

  • Lee, Seokhwan;Chae, Byungman;Lee, Sangwoo;Lee, Seunghwan
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.14-18
    • /
    • 2019
  • In general after the etching process, waste etching solution contains metals. (ex. Nickel (Ni), Chromium (Cr), Zinc (Zn), etc.) In this work, we proposed a recycling process for waste etching solution and refining from waste liquid contained nickel to make nickel metal nano powder. At first, the neutralization agent was experimentally selected through the hydrolysis of impurities such as iron by adjusting the pH. We selected sodium hydroxide solution as a neutralizing agent, and removed impurities such as iron by pH = 4. And then, metal ions (ex. Manganese (Mn) and Zinc (Zn), etc.) remain as impurities were refined by D2EHPA (Di-(2-ethylhexyl) phosphoric acid). The nickel powders were synthesized by liquid phase reduction method with hydrazine ($N_2H_4$) and sodium hydroxide (NaOH). The resulting nickel chloride solution and nickel metal powder has high purity ( > 99%). The purity of nickel chloride solution and nickel nano powders were measured by EDTA (ethylenediaminetetraacetic) titration method with ICP-OES (inductively coupled plasma optical emission spectrometer). FE-SEM (field emission scanning electron microscopy) was used to investigate the morphology, particle size and crystal structure of the nickel metal nano powder. The structural properties of the nickel nano powder were characterized by XRD (X-ray diffraction) and TEM (transmission electron microscopy).

Study of Nano-scale Fullerene (C60) Clusters Formed in Micro-sized Droplet by UV Irradiation

  • Yeo, Seung-Jun;Ahn, Jeung-Sun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.571-571
    • /
    • 2012
  • We discovered the formation of C60 aggregates in solution by means of photoluminescence spectroscopic study on C60 in solutions. From the in-depth investigation of temperature dependence of the luminescence of C60 in toluene, benzene and CS2 solutions, we reported that the C60 aggregates are formed during cooling at the freezing temperature of these solvents. Furthermore, the C60 aggregates can be changed to stable structures by irradiating with UV pulse-laser (Nd:YAG laser, 355nm). As a consequence, we could obtain nano-scale photo-polymerized C60 clusters, which appear as round-shaped nano- scale particles in high resolution transmission electron-microscopy (HRTEM) images. However, the yield of the nano-scale C60 clusters obtained by this method is too small. So we designed and developed a system to obtain C60 cluster of macroscopic quantity by using ultrasonic nebulizer. In this system, C60 solution was vaporized to several micro-sized droplets in vacuum, resulting in the formation of C60 aggregates by evaporating solvent (toluene). The system was invented to produce nano-scale carbon clusters by the irradiation of UV light upon C60 aggregates in vacuum. We have characterized the products, C60 cluster, obtained from the system by using UV absorption spectra and HPLC spectra. Although the products have a possibility of inclusion various forms of C60 cluster, results support that the product formed from the system by using vaporizer method establishes a new method to obtain C60 cluster in macroscopic quantity. In the presentation, the details of the system and the results of characterization are reported.

  • PDF

Synthesis and Dispersion of Ceria(CeO2) Nanoparticles by Solvothermal Process (용매열 공정을 이용한 세리아(CeO2) 나노분말의 합성 및 분산거동)

  • Lim, Tae Seop;Ock, Ji Young;Choi, Yeon Bin;Kim, Bong Gu;Son, Jeong Hun;Jung, Yeon Gil
    • Korean Journal of Materials Research
    • /
    • v.30 no.7
    • /
    • pp.376-382
    • /
    • 2020
  • CeO2 nanoparticles, employed in a lot of fields due to their excellent oxidation and reduction properties, are synthesized through a solvothermal process, and a high specific surface area is shown by controlling, among various process parameters in the solvothermal process, the type of solvent. The synthesized CeO2 nanoparticles are about 11~13 nm in the crystallite size and their specific surface area is about 65.38~84.65 ㎡/g, depending on the amount of ethanol contained in the solvent for the solvothermal process; all synthesized CeO2 nanoparticles shows a fluorite structure. The dispersibility and microstructure of the synthesized CeO2 nanoparticles are investigated according to the species of dispersant and the pH value of the solution; an improvement in dispersibility is shown with the addition of dispersants and control of the pH. Various dispersing properties appear according to the dispersant species and pH in the solution with the synthesized CeO2 nanoparticles, indicating that improved dispersing properties in the synthesized CeO2 nanoparticles can be secured by applying dispersant and pH control simultaneously.

Chemical Bonding Nature and Mesoporous Structure of Nickel Intercalated Montmorillonite Clay

  • Park, Hye-Mi;Kim, Tae-Woo;Hwang, Seong-Ju;Choy, Jin-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.9
    • /
    • pp.1323-1328
    • /
    • 2006
  • Mesoporous nickel intercalated aluminosilicate nanohybrid has been synthesized through a recombination reaction between the colloidal suspension of exfoliated montmorillonite nanosheets and aqueous nickel acetate solution. According to powder X-ray diffraction and field emission-scanning electron microscopic analyses, the intercalation of nickel species expands significantly the basal spacing of the host montmorillonite clay and the crystallites of the intercalation compound are assembled to form a house-of-card structure. $N_2$ adsorption-desorption isotherm measurements with BJH pore analyses clearly demonstrated that the porosity of the intercalate originates mainly from mesopores (diameter $\sim50\;\AA$) formed by the house-of-card type stacking of clay crystallites. From FT-IR and X-ray absorption spectroscopic analyses, it becomes certain that intercalated nickel ion is stabilized in an isolated $NiO_6$ octahedral unit. The present mesoporous intercalation compound is expected to be applicable as efficient catalysts or absorbents.

Adsorption of Nicotine/Tar by Acetate Nano Fiber (아세테이트 나노섬유에 의한 니코틴/타르의 흡착)

  • Choi Chang Nam;Cho Yong Jun;Chang Mi Hwa;Cho Sung Yong
    • Textile Coloration and Finishing
    • /
    • v.17 no.4 s.83
    • /
    • pp.27-34
    • /
    • 2005
  • In order to prepare acetate nano filter for the adsorption of nicotine/tar in tobbaco, acetate nano fiber was fabricated by elecrospining from acetate solution dissolved in acetone/DMAc(2/1). Above a critical polymer concentration($15\%$), the nano fiber was formed. The average diameter of nano fiber was decreased with the applied voltage and increased with the feeding rate. Appropriate spinning condition was considered to be $15wt\%$ polymer concentration, 11.25kV applied voltage, 0.6ml/h feeding rate, and 13-15cm TCD. Using the nano fiber, acetate nano filter was fabricated. It showed good nicotine/tar adsorption ability compared with general tobbaco filter. It was considered that the increase of surface area and the development of microporous structure in filter was much affected to the adsorption of nicotine/tar.

Fluorine-Doping Effect on Structural and Optical Properties of ZnO Nanorods Synthesized by Hydrothermal Method

  • Yoon, Hyunsik;Kim, Ikhyun;Kang, Daeho;Kim, Soaram;Kim, Jong Su;Lee, Sang-Heon;Leem, Jae-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.204.1-204.1
    • /
    • 2013
  • Fluorine, the radius of which is close to that of oxygen, could be an appropriate anion doping candidate. A lower lattice distortion could be expected for F doping, compared with Al, Ga, and In doping. F-doped ZnO (FZO) and undoped ZnO nanorods were grown onto glass substrate by the hydrothemal method. The doping level in the solution, designated by F/Zn atomic ratio of was varied from 0.0 to 10.0 in 2.0 steps. To investigate the effects of the structure and optical properties of FZO nanorods were investigated using X-ray diffraction, UV-visible spectroscopy and photoluminescence (PL). For the PL spectra, the maximum peak position of NBE moves to higher energy, from 0 to 4 at.%. As the doping concentration increases, the maximum peak position of NBE gradually moves to lover energy, from 4 to 10 at.%.

  • PDF