DOI QR코드

DOI QR Code

Synthesis and Dispersion of Ceria(CeO2) Nanoparticles by Solvothermal Process

용매열 공정을 이용한 세리아(CeO2) 나노분말의 합성 및 분산거동

  • Lim, Tae Seop (School of Nano & Advanced Materials Eng., Changwon National Univ.) ;
  • Ock, Ji Young (School of Nano & Advanced Materials Eng., Changwon National Univ.) ;
  • Choi, Yeon Bin (School of Nano & Advanced Materials Eng., Changwon National Univ.) ;
  • Kim, Bong Gu (School of Nano & Advanced Materials Eng., Changwon National Univ.) ;
  • Son, Jeong Hun (School of Nano & Advanced Materials Eng., Changwon National Univ.) ;
  • Jung, Yeon Gil (School of Nano & Advanced Materials Eng., Changwon National Univ.)
  • 임태섭 (창원대학교 신소재공학과) ;
  • 옥지영 (창원대학교 신소재공학과) ;
  • 최연빈 (창원대학교 신소재공학과) ;
  • 김봉구 (창원대학교 신소재공학과) ;
  • 손정훈 (창원대학교 신소재공학과) ;
  • 정연길 (창원대학교 신소재공학과)
  • Received : 2020.04.22
  • Accepted : 2020.07.07
  • Published : 2020.07.27

Abstract

CeO2 nanoparticles, employed in a lot of fields due to their excellent oxidation and reduction properties, are synthesized through a solvothermal process, and a high specific surface area is shown by controlling, among various process parameters in the solvothermal process, the type of solvent. The synthesized CeO2 nanoparticles are about 11~13 nm in the crystallite size and their specific surface area is about 65.38~84.65 ㎡/g, depending on the amount of ethanol contained in the solvent for the solvothermal process; all synthesized CeO2 nanoparticles shows a fluorite structure. The dispersibility and microstructure of the synthesized CeO2 nanoparticles are investigated according to the species of dispersant and the pH value of the solution; an improvement in dispersibility is shown with the addition of dispersants and control of the pH. Various dispersing properties appear according to the dispersant species and pH in the solution with the synthesized CeO2 nanoparticles, indicating that improved dispersing properties in the synthesized CeO2 nanoparticles can be secured by applying dispersant and pH control simultaneously.

Keywords

References

  1. N. Phonthammachai, M. Rumruangwong, E. Gulari, A. M. Jamieson, S. Jitkarnka and S. Wongkasemjit, Colloids Surf., A, 247, 61 (2004). https://doi.org/10.1016/j.colsurfa.2004.08.030
  2. A. Trovarelli, F. Zamar, J. Llorca, C. D. Leitenburg, G. Dolcetti and J. T. Kiss, J. Catal., 169, 490 (1997). https://doi.org/10.1006/jcat.1997.1705
  3. T. X. T. Sayle and D. C. Sayle, ACS Nano, 4, 879 (2010). https://doi.org/10.1021/nn901612s
  4. A. Gupta, A. Kumar, M. S. Hedge and U. V. Waghmare, J. Chem. Phys., 132, 194702 (2010). https://doi.org/10.1063/1.3425662
  5. A. V. Thorat, T. Ghoshal, P. Carolan, J. D. Holmes and M. A. Morris, J. Phys. Chem. C, 118, 10700 (2014). https://doi.org/10.1021/jp410213n
  6. X. Chao, Z. Junwu, Y. Xujie, L. Lude and W. Xin, J. Rare Earths, 26, 51 (2008). https://doi.org/10.1016/S1002-0721(08)60036-8
  7. L. G. Cong, C. L. Miao, D. X. Chen and L. D. Wen, Trans. Nonferrous Met. Soc. China, 18, 897 (2008). https://doi.org/10.1016/S1003-6326(08)60155-7
  8. R. C. R. Neto and M. Schmal, Appl. Catal., A, 450, 131 (2013). https://doi.org/10.1016/j.apcata.2012.10.002
  9. Q. Yuan, H. H. Duan, L. L. Li, L. D. Sun, Y. W. Zhang and C. H. Yan, J. Colloid Interface Sci., 335, 151 (2009). https://doi.org/10.1016/j.jcis.2009.04.007
  10. B. Choudhury and A. Choudhury, Mater. Chem. Phys., 131, 666 (2012). https://doi.org/10.1016/j.matchemphys.2011.10.032
  11. H. C. Yao and Y. F. Y. Yao, J. Catal., 86, 254 (1984). https://doi.org/10.1016/0021-9517(84)90371-3
  12. M. Fu, X. Yue, D. Ye, J. Ouyang, B. Huang, J. Wu and H. Liang, Catal. Today, 153, 125 (2010). https://doi.org/10.1016/j.cattod.2010.03.017
  13. H. He, P. Yang, J. Li, R. Shi, L. Chen, A. Zhang and Y. Zhu, Ceram. Int., 42, 7810 (2016). https://doi.org/10.1016/j.ceramint.2016.02.005
  14. L. Yan, X. Xing, R. Yu, J. Deng, J. Chen and G. Liu, Phys. B, 390, 59 (2007). https://doi.org/10.1016/j.physb.2006.07.062
  15. D. Zhang, F. Niu, H. Li, L. Shi and J. Fang, Powder Technol., 207, 35 (2011). https://doi.org/10.1016/j.powtec.2010.10.007
  16. O. P. Rodriguez, C. F. S. Valdes, M. Garriga, M. I. Alonso, X. Obradors and T. Puig, Mater. Chem. Phys., 138, 462 (2013). https://doi.org/10.1016/j.matchemphys.2012.11.069
  17. G. Panzera, V. Modafferi, S. Candamano, A. Donato, F. Frusteri and P. L. Antonucci, J. Power Sources, 135, 177 (2004). https://doi.org/10.1016/j.jpowsour.2004.04.006
  18. S. Deng, J. Zhang and L. Ye, Compos. Sci. Tech., 69, 2497 (2009). https://doi.org/10.1016/j.compscitech.2009.07.001
  19. M. Hussain, Y. Oku, A. Nakahira and K. Niihara, Mater. Lett., 26, 177 (1996). https://doi.org/10.1016/0167-577X(95)00223-5
  20. J. Naser, W. Riehemann and H. Ferkel, Mater. Sci. Eng., A 234, 467 (1997). https://doi.org/10.1016/S0921-5093(97)00269-4
  21. P. D. Castrillo, D. Olmos, D. R. Amador and J. G. Benito, J. Colloid Interface Sci., 308, 318 (2007). https://doi.org/10.1016/j.jcis.2007.01.022
  22. Y. Y. Huang and E. M. Terentjev, Polymers, 4, 275 (2012). https://doi.org/10.3390/polym4010275
  23. R. Feng, Y. Zhao, C. Zhu and T. J. Mason, Ultrason. Sonochem., 9, 231 (2002). https://doi.org/10.1016/S1350-4177(02)00083-4
  24. E. Wernersson and R. Kjellander, J. Chem. Phys., 125, 154702 (2006). https://doi.org/10.1063/1.2357940
  25. J. Vatamanu, L. Cao, O. Borodin, D. Bedrov and G. D. Smith, J. Phys. Chem. Lett., 2, 2267 (2011). https://doi.org/10.1021/jz200879a
  26. V. Lockett, R. Sedev and J. Ralston, J. Phys. Chem. C, 112, 7486 (2008). https://doi.org/10.1021/jp7100732
  27. C. Guibert, V. Dupuis, J. Fresnais and V. Peyre, J. Colloid Interface Sci., 454, 105 (2015). https://doi.org/10.1016/j.jcis.2015.04.059
  28. B. P. Singh, S. Nayak, S. Samal, S. Bhattacharjee and L. Besra, Appl. Surf. Sci., 258, 3524 (2012). https://doi.org/10.1016/j.apsusc.2011.11.107
  29. J. Cesarano III, I. A. Aksay and A. Bleier, J. Am. Ceram. Soc., 71, 250 (1988). https://doi.org/10.1111/j.1151-2916.1988.tb05855.x
  30. V. L. Wiesner, J. P. Youngblood and R. W. Trice, J. Eur. Ceram. Soc., 34, 453 (2014). https://doi.org/10.1016/j.jeurceramsoc.2013.08.017
  31. T. Fengqiu, H. Xiaoxian, Z. Yufeng and G. Jingkun, Ceram. Int., 26, 93 (2000). https://doi.org/10.1016/S0272-8842(99)00024-3
  32. H. H. Tang, M. L. Chiu and H. C. Yen, J. Eur. Ceram. Soc., 31, 1383 (2011). https://doi.org/10.1016/j.jeurceramsoc.2011.02.020
  33. X. Gao, Y. Jiang, Y. Zhong, Z. Luo and K. Cen, J. Hazard. Mater., 174, 734 (2010). https://doi.org/10.1016/j.jhazmat.2009.09.112
  34. T. Karaca, T. G. Altincekic and M. F. Oksuzomer, Ceram. Int., 36, 1101 (2010). https://doi.org/10.1016/j.ceramint.2009.12.005
  35. M. Leoni, R. Maggio, S. Polizzi and P. Scardi, J. Am. Ceram. Soc., 87, 1133 (2004). https://doi.org/10.1111/j.1551-2916.2004.01133.x