• Title/Summary/Keyword: Nano solution

Search Result 1,211, Processing Time 0.025 seconds

Conjugation of Ginsenoside Rg3 with Gold Nanoparticles

  • Park, You-Mie;Im, A-Rang;Joo, Eun-Ji;Lee, Ji-Hye;Park, Hyeung-Geun;Kang, Young-Hwa;Linhardt, Robert J.;Kim, Yeong-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.286-290
    • /
    • 2011
  • Ginsenoside Rg3 was reported to have important biological activities. We demonstrate conjugation and quantification procedures of ginsenoside Rg3 to gold nanoparticles for future biological and medical applications. Ginsenoside Rg3 was conjugated to spherical gold nanoparticles using a bifunctional heptaethylene glycol linker. The sulfhydryl group of heptaethylene glycol was adsorbed onto gold nanoparticles, and carboxylic acid end of heptaethylene glycol was bonded through a hydroxyl group of Rg3 via ester bond formation. The conjugation of Rg3 was characterized with various spectroscopic techniques, high resolution-transmission electron microscopy, and using Rg3 monoclonal antibody. The Rg3- functionalized gold nanoparticles were $4.7{\pm}1.0$ nm in diameter with a surface charge of -4.12 mV. The total number of Rg3 molecules conjugated to a 3.6 mL solution of gold nanoparticle was determined to be $9.5{\times}10^{14}$ corresponding to ~6 molecules of Rg3/gold nanoparticle. These results suggest that ginsenoside Rg3 is successfully conjugated to gold nanoparticles via heptaethylene glycol linker. The quantification was performed by using Rg3 monoclonal antibody without interference of gold's intrinsic color.

Front-side Texturing of Crystalline Silicon Solar Cell by Micro-contact Printing (마이크로 컨텍 프린팅 기법을 이용한 결정질 실리콘 태양전지의 전면 텍스쳐링)

  • Hong, Jihwa;Han, Yoon-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.11
    • /
    • pp.841-845
    • /
    • 2013
  • We give a textured front on silicon wafer for high-efficiency solar cells by using micro contact printing method which uses PDMS (polydimethylsiloxane) silicon rubber as a stamp and SAM (self assembled monolayer)s as an ink. A random pyramidal texturing have been widely used for a front-surface texturing in low cost manufacturing line although the cell with random pyramids on front surface shows relatively low efficiency than the cell with inverted pyramids patterned by normal optical lithography. In the past two decades, the micro contact printing has been intensively studied in nano technology field for high resolution patterns on silicon wafer. However, this promising printing technique has surprisingly never applied so far to silicon based solar cell industry despite their simplicity of process and attractive aspects in terms of cost competitiveness. We employ a MHA (16-mercaptohexadecanoic acid) as an ink for Au deposited $SiO_2/Si$ substrate. The $SiO_2$ pattern which is same as the pattern printed by SAM ink on Au surface and later acts as a hard resist for anisotropic silicon etching was made by HF solution, and then inverted pyramidal pattern is formed after anisotropic wet etching. We compare three textured surface with different morphology (random texture, random pyramids and inverted pyramids) and then different geometry of inverted pyramid arrays in terms of reflectivity.

A Study on the Thermal and Chemical Properties of Carbon Nanotube Reinforced Nanocomposite in Power Cables

  • Yang, Sang-Hyun;Jang, Hyeok-Jin;Park, Noh-Joon;Park, Dae-Hee;Yang, Hoon;Bang, Jeong-Hwan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.6
    • /
    • pp.217-221
    • /
    • 2009
  • The use of the carbon nanotube (CNT) is superior to the general powder state materials in their thermal and chemical properties. Because its ratio of diameter to length (aspect ratio) is very large, it is known to be a type of ideal nano-reinforcement material. Based on this advantage, the existing carbon black of the semiconductive shield materials used in power cables can acquire excellent properties by the use of a small amount of CNTs. Therefore, we fabricated specimens using a solution mixing method. We investigated the thermal properties of the CNT, such as its storage modulus, loss modulus, and its tan delta using a dynamic mechanical analysis 2980. We found that a high thermal resistance level is demonstrated by using a small amount of CNTs. We also investigated the chemical properties of the CNT, such as the oxidation reaction by using Fourier transform infrared spectroscopy (FT-IR) made by Travel IR. In the case of the FT-IR tests, we searched for some degree of oxidation by detecting the carboxyl group (C=O). The results confirm a tendency for a high cross-linking density in a new network in which the CNTs situated between the carbon black constituent molecules show a bond using similar constructive properties.

Growth and Electrochemical Behavior of Poly[Ni(saldMp)] on Carbon Nanotubes as Potential Supercapacitor Materials

  • Zhang, Yakun;Li, Jianling;Kang, Feiyu;Wang, Xindong;Ye, Feng;Yang, Jun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1972-1978
    • /
    • 2012
  • The polymer of (2,2-dimethyl-1,3-propanediaminebis(salicylideneaminato))-nickel(II), Ni(saldMp), was deposited on multi-walled carbon nanotubes (MWCNTs) substrate by the route of potential linear sweep. The nano structures of poly[Ni(saldMp)] have been obtained by adjusting the monomer concentration of 0.1, 0.2, 0.5, 1.0 and 1.5 mmol $L^{-1}$. The poly[Ni(saldMp)] prepared in acetonitrile solution with monomer concentration of 1.0 mmol $L^{-1}$ shows the fastest growth rate. The effects of potential window on charge-discharge efficiency and electrodeposition scan number on capacitance performance were discussed. Poly[Ni(saldMp)] prepared with less electrodeposition scans exhibits higher capacitance, but this goes against the improvement of the whole electrode capacitance. Sample with 8 deposition scans is the best compromise with the geometric specific capacitance 3.53 times as high as that of pure MWCNTs, and 1.24 times for the gravimetric specific capacitance under the test potential window 0.0-1.0 V.

Fabrication and (Photo)Electrochemical Properties of Fe2O3/Na2Ti6O13/FTO Films for Water Splitting Process (물분해용 Fe2O3/Na2Ti6O13/FTO 박막 제조 및 특성평가)

  • Yun, Kang-Seop;Ku, Hye-Kyung;Kang, Woo-Seung;Kim, Sun-Jae
    • Corrosion Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.65-69
    • /
    • 2012
  • One dimensional(1D) $Na_2Ti_6O_{13}$ nanorods with 70 nm in diameter was synthesized by a molten salt method. Using the synthesized nanorods, about 750 nm thick $Na_2Ti_6O_{13}$ film was coated on Fluorine-doped tin oxide(FTO) glasss substrate by the Layer-by-layer self-assembly(LBL-SA) method in which a repetitive self-assembling of ions containing an opposite electric charge in an aqueous solution was utilized. Using the Kubelka-Munk function, the band gap energy of the 1D-$Na_2Ti_6O_{13}$ nanorods was nalyzed to be 3.5 eV. On the other hand, the band gap energy of the $Na_2Ti_6O_{13}$ film coated on FTO was found to be a reduced value of 2.9 eV, resulting from the nano-scale and high porosity of the film processed by LBL-SA method, which was favorable for the photo absorption capability. A significant improvement of photocurrent and onset voltage was observed with the $Na_2Ti_6O_{13}$ film incorporated into the conventional $Fe_2O_3$ photoelectrode: the photocurrent increased from 0.25 to 0.82 mA/$cm^2$, the onset voltage decreased from 0.95 to 0.78 V.

Gas Sensing Characteristics of WO3:In2O3 Prepared by Ball-mill Time (볼밀시간에 의한 WO3:In2O3 가스센서의 감응특성)

  • Shin, Deuck-Jin;Yu, Yun-Sik;Park, Sung-Hyun;Yu, Il
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.299-302
    • /
    • 2011
  • [ $WO_3$ ]powders were ball-milled with an alumina ball for 0-72 hours. $In_2O_3$ doped $WO_3$ was prepared by soaking ball-milled $WO_3$ in an $InCl_3$ solution. The mixed powder was annealed at $700^{\circ}C$ for 30 min in an air atmosphere. A paste for screen-printing the thick film was prepared by mixing the $WO_3$:In2O3 powders with ${\alpha}$-terpinol and glycerol. $In_2O_3$ doped $WO_3$ thick films were fabricated into a gas sensor by a screen-printing method on alumina substrates. The structural properties of the $WO_3$:$InO_3$ thick films were a monoclinic phase with a (002) dominant orientation. The particle size of the $WO_3$:$InO_3$ decreased with the ball-milling time. The sensing characteristics of the $In_2O_3$ doped $WO_3$ were investigated by measuring the electrical resistance of each sensor in the test-box. The highest sensitivity to 5 ppm $CH_4$ gas and 5 ppm $CH_3CH_2CH_3$ gas was observed in the ball-milled $WO_3$:$InO_3$ gas sensors at 48 hours. The response time of $WO_3$:$In_2O_3$ gas sensors was 7 seconds and recovery time was 9 seconds for the methane gas.

High-Performance Ionic Polymer-Metal Composite Actuators Based on Nafion/Conducting Nanoparticulate Electrospun Webs (나피온/전도성 나노입자 전기방사 웹을 이용한 고성능 이온성 고분자-금속 복합체 구동기의 제조)

  • Jung, Yo-Han;Lee, Jang-Woo;Yoo, Young-Tai
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.434-439
    • /
    • 2012
  • To improve the performance of ionic polymer-metal composite (IPMC) actuators, Nafion films sandwiched with Nafion/conducting nanoparticulate electrospun webs were used as polymer electrolytes of IPMC. Multiwalled carbon nanotube (MWNT) and silver were the conducting nanoparticulates and the nanoparticles dispersed in a Nafion solution were electrospun. IPMCs with the Nafion/conducting nanoparticulate electrospun webs displayed improved displacements, response rates, and blocking forces. MWNT was superior to silver in terms of displacement and blocking force, and the webs without the conducting fillers also caused enhanced performances compared with the conventional IPMCs. These improvements were attributed to an elevated electrolyte flux through highly porous interlayers and capacitance induced by well dispersed conducting fillers, and low interfacial resistance between electrolyte and electrodes.

Preparation and Characterization of Electrospun Nanofibers Containing Natural Antimicrobials (천연 향균물질 함유 나노섬유의 제조 및 특성분석)

  • Kim, Young-Jin;Kim, Sang-Nam;Kwon, Oh-Kyoung;Park, Mi-Ran;Kang, Inn-Kyu;Lee, Se-Geun
    • Polymer(Korea)
    • /
    • v.33 no.4
    • /
    • pp.307-312
    • /
    • 2009
  • The fabrication of PHBV nanofibers containing various plant polyphenols by electrospinning has been examined. It has been found that the average diameters of fibers increased by the adding of polyphenols. The resulting fibers exhibited a uniform diameter ranging from 340 to 450 nm. As the concentration of polyphenols increased, the diameter of fibers increased due to the hydrogen bonding interaction between the ester groups of PHBV and hydroxyl groups of polyphenols. The interaction between PHBV and polyphenols, which forms a complex together in solution, was verifed by UV measurement. ATR-FTIR analysis confirmed the existence of the hydrogen bonding interaction. The semicrystalline structure of the PHBV nanofiber was observed from XRD pattern. The crystallinity of PHBV nanofibers was increased by the adding of polyphenols. PHBV nanofibers containing polyphenols showed superior antimicrobial activities.

Biodegradable PLGA Polymer Coating on Biomedical Metal Implants Using Electrospraying (전기분사를 이용한 의료용 금속 임플란트의 생분해성 PLGA 고분자 코팅)

  • Cho, Seong-Bae;Park, Chul-Ho;Park, Kwi-Deok;Chung, Dong-Jun;Han, Dong-Keun
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.620-624
    • /
    • 2009
  • Biomedical metal implants have been used clinically for replacement, restoration, or improvement of injury bodies based on high mechanical properties, but it has some risks such as the inflammatory, late thrombosis, or restenosis due to the low biocompatibility and toxicity. In various techniques of surface treatment developed to preserve these drawbacks, this study examined the electrospray coating technology with biodegradable poly (lactic-co-glycoic acid) (PLGA) on metal surface. Based on fundamental examination of electrospraying and solution parameters, the surface morphology of coated film was closely related to the boiling point of solvent, in-flight distance, and droplet size. The thickness of polymer film was linearly proportional to the emerged volume. This result exhibits that the polymeric droplets were continuously deposited on the polymer film. Therefore, the electrospray coating technology might be applied into the fabrication of single/multi-layered polymer film in nano-/micro-thickness and the control of the topology for biomedical metal implants including stents.

Preparation and Properties of Hollow Fiber Membrane for Gas Separation Using CTA (CTA를 이용한 중공사형 기체분리막의 제조 및 특성)

  • Koh, Hyung-Chul;Ha, Seong-Yong;Nam, Sang-Yong
    • Membrane Journal
    • /
    • v.21 no.1
    • /
    • pp.98-105
    • /
    • 2011
  • Cellulose triacetate (CTA) polymer among cellulose esters were used for preparing hollow fiber membranes by phase separation method to investigate the gas permeation properties. To endow gas separation properties, 1,4-dioxane and LiCl were used as additives in the polymer dope solution. The spinning conditions including spinning temperature were controlled to form an active skin layer on the hollow fiber surface. Scanning electron microscopy was used to examine morphology of surface and cross section of the prepared CTA hollow fibers. The gas permeation performance of CTA hollow fiber membranes showed $P_{CO2}$ = 17 GPU and ${\alpha}_{CO2/N2}$ = 48.