Browse > Article

Preparation and Properties of Hollow Fiber Membrane for Gas Separation Using CTA  

Koh, Hyung-Chul (Airrane Co. Ltd.)
Ha, Seong-Yong (Airrane Co. Ltd.)
Nam, Sang-Yong (School of Nano and Advanced Materials Engineering, Enginnering Research Institute, i-Cube Center, Gyeongsang National University)
Publication Information
Membrane Journal / v.21, no.1, 2011 , pp. 98-105 More about this Journal
Abstract
Cellulose triacetate (CTA) polymer among cellulose esters were used for preparing hollow fiber membranes by phase separation method to investigate the gas permeation properties. To endow gas separation properties, 1,4-dioxane and LiCl were used as additives in the polymer dope solution. The spinning conditions including spinning temperature were controlled to form an active skin layer on the hollow fiber surface. Scanning electron microscopy was used to examine morphology of surface and cross section of the prepared CTA hollow fibers. The gas permeation performance of CTA hollow fiber membranes showed $P_{CO2}$ = 17 GPU and ${\alpha}_{CO2/N2}$ = 48.
Keywords
cellulose triacetate; hollow fiber; gas separation; permeance; selectivity; carbon dioxide;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Y. B. Lee, H. B. Park, J. K. Shim, and Y. M. Lee, "Synthesis and Caracterization of Polyamideimide-Branched Siloxane and Its Gas-Separation", J. Appl. Polym. Sci., 74, 965 (1999).   DOI   ScienceOn
2 R. M. Barrer, "Permeation, Diffusion and Solution of Gases in Organic Polymers", Trans Raraday Coc., 35, 628 (1939).
3 S. J. Kim, S. M. Woo, H. Y. Hwang, H. C. Koh, S. Y. Ha, H. S. Choi, and S. Y. Nam, "Preparation and Properties of Chlorine-Resistance Loose Reverse Osmosis Hollow-fiber Membrane", Membrane Journal, 20, 304 (2010).
4 I. Pinnau and B. D. Freeman, "Formation and modification of polymeric membranes", ACS symposium Series, 744, 1 (1999).
5 M. D. Heinz-Joachim and F. Elizabeth, "Modified membranes", AU patent 2002214802 November 09 (2001).
6 J. Phattaranawik, R. Jiraratananon, and A. G. Fane, "Effect of pore size distribution and air flux on mass transport in direct contact membrane distillation", J. Membr. Sci., 215, 75 (2003).   DOI   ScienceOn
7 B. K. Sea, Y. I. Park, and K. H. Lee, "Membrane Separation for $CO_{2}$ Emission Control", HWAHAK KONGHAK, 41, 415 (2003).
8 D. R. Paul and Y. P. Yampol'skii, "Polymeric Gas Separation Membranes", CRC Press, Boca Raton, FL (1994).
9 C. Hendriks, "Carbon Dioxide Removal from Coal Fired Power Plant", pp. 53-81, Springer, New York, NY (1994).
10 D. L. Ellig, J. B. Althouse, and F. P. McCandless, "Concentration of Methane from Mixtures with Carbon Dioxide by Permeation through Polymeric Films", J. Membr. Sci., 6, 259 (1980).   DOI
11 Y. Osada and T. Nakagawa, "Membrane Science and Technology", CRC press, Boca Raton, FL (1992).
12 K. Okamoto, M. Fujii, S. Okamyo, H. Suzuki, K. Tanaka, and H. Kita, "Gas Permeation Properties of Polyether Imide Segmented Copolymer", Macromolecules, 29, 6990 (1995).
13 M. Sossna, M. Hollas, J. Schaper, and T. Scheper, "Structural Development of Asymmetric Cellulose Acetate Microfiltration Membranes prepared by a Single-layer Dry-casting Method", J. Membr. Sci., 289, 7 (2007).   DOI   ScienceOn
14 M. A. Chaudry, "Water and ions transport mechanism in hyperfiltration with symmetric cellulose acetate membranes", J. Membr. Sci., 209, 316 (2002).
15 L. Kastelan-Kunst, V. Dananic, B. Kunst, and K. Kosutic, "Preparation and Porosity of Cellulose Triacetate Reverse Osmosis Membranes", J. Membr. Sci., 109, 223 (1996).   DOI   ScienceOn
16 B. Cai, Y. Zhou, and C. Gao, "Modified Performance of Cellulose Triacetate Hollow Fiber Membrane", Desalination, 146, 331 (2002).   DOI
17 H. Y. Hwang, H. C. Koh, and S. Y. Nam, "Preparation and Properties of Cellulose Triacetate Membranes for Reverse Osmosis", Membrane Journal, 17, 227 (2007).
18 S. W. Yoon, B. S. Lee, B. S. Lee, S. I. Cheong, and J. W. Rhim, "Gas Permeation Properties of Sulfonated 6FDA-based Polyimide Membranes", Membrane Journal, 19, 237 (2009).