• 제목/요약/키워드: Nano silica

검색결과 411건 처리시간 0.027초

Nano-Sillica를 이용한 해양콘크리트 방식공법 현장 적용 (Field Application of the Corrosion Protection Method for Marine Concrete with Nano-Silica)

  • 김경민;류동우;박상준;김종백;조성현
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2009년도 춘계 학술대회 제21권1호
    • /
    • pp.399-400
    • /
    • 2009
  • 본 연구에서는 염화물 이온을 효율적으로 침투방지 시키기 위한 방법으로, 나노실리카를 이용한 해양콘크리트 방식공법의 현장 적용성에 대하여 검토하였다. 적용결과, 굳지않은 콘크리트에서는 슬럼프 및 공기량에서 큰 차이가 없는 것으로 나타났고, 경화 콘크리트의 염화물 확산 특성에서는 초기 및 후기에서 공히 우수한 효과가 있는 것으로 나타났는데, 이는 나노실리카가 염소이온의 침투 및 확산을 방지하였기 때문인 것으로 판단된다.

  • PDF

나노 시멘트를 이용한 고강도 콘크리트의 특성 (Characteristics of high-performance concrete with nano size cement)

  • 조병완;박종빈;최해윤
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.13-16
    • /
    • 2005
  • Nanoscale materials are of great interest due to their unique optical, electrical and magnetic properties. Due to the recent amazing achievements in nano technology, new materials were developed. But these nano technology is not apply to the construction part in spite of exellent properties of nano size material. The purpose of this study is to apply to nano technology into building materials. To develop the high performance concrete, nano cement particles is prepared by mechanical method. In the results of this study, the nano silica powder increase effect according to increase of the mixing amount, appeared that compressive strength increased but is limit in increment. For the production of high-strength concrete, nano silica powder was suitable the binder ratio from 20$\%$. And, the compressive strength of concrete are especially dependent on the curing temperature.

  • PDF

A New Composition of Nanosized Silica-Silver for Control of Various Plant Diseases

  • Park Hae-Jun;Kim Sung-Ho;Kim Hwa-Jung;Choi Seong-Ho
    • The Plant Pathology Journal
    • /
    • 제22권3호
    • /
    • pp.295-302
    • /
    • 2006
  • The present study addressed the efficacy of nanosized silica-silver for controlling plant pathogenic microorganisms. The nanosized silica-silver consisted of nano-silver combined with silica molecules and water soluble polymer, prepared by exposing a solution including silver salt, silicate and water soluble polymer to radioactive rays. The nanosized silica-silver showed antifungal activity against the tested phytopathogenic fungi at 3.0 ppm with varied degrees. In contrast, a number of beneficial bacteria or plant pathogenic bacteria were not significantly affected at 10 ppm level but completely inhibited by 100 ppm of nanosized silicasilver. Among the tested plant pathogenic fungi, the new product effectively controlled powdery mildews of pumpkin at 0.3 ppm in both field and greenhouse tests. The pathogens disappeared from the infected leaves 3 days after spray and the plants remained healthy thereafter. Our results suggested that the product developed in this study was effective in controlling various plant fungal diseases.

은을 코팅한 Nano-Colloidal Silica의 합성 (Synthesis of Nano-Colloidal Silica Coated with Silver)

  • 이주헌;임윤희;함재용
    • 공업화학
    • /
    • 제19권1호
    • /
    • pp.45-50
    • /
    • 2008
  • 본 연구에서는 나노 콜로이드 실리카에 은을 코팅하기 위하여 직접 은을 코팅하는 방법과 실리카입자 표면개질 후 은을 코팅하는 방법 등의 2가지 방법이 시도되었다. 실리카에 대한 은의 질량비율과 환원제 주입량 등이 은의 코팅에 미치는 영향을 조사하였다. 콜로이드 실리카에 직접 은을 코팅한 경우보다 MPTS (3-Mercaptopropyl trimethoxysilane)와 APTS (3-Aminopropyl trimethoxysilane)로 표면개질한 후 은을 코팅한 경우가 높은 은(Ag) 코팅율과 우수한 항균효과를 나타내는 것이 관찰되었다.

나노세공 실리카 분말의 합성과 열적 특성에 관한 연구 (Study on the Synthesis and thermal Characteristics of Nano Porous Silica Powder)

  • 김종길;박진구;김호건
    • 한국분말재료학회지
    • /
    • 제9권5호
    • /
    • pp.365-369
    • /
    • 2002
  • Silica hydrogel was synthesized by the reaction of liquid sodium silicate with sulfuric acid. The condensation polymerization of the synthesized hydrogel was carried out via an aging process under the acidic or alkaline conditions. Nano porous silica with the pore size below 3 nm and surface area of $715m^2/g$, was obtained by the above processes in acidic ranges(pH : 3~5). The pore size and surface area of the silica varied with pH, and in alkaline ranges(pH : 8~10), those were 21 nm and $300m^2/g$ respectively. The characteristics of the silica varied with the thermal treatment which caused the change of surface area, pore volume and pore diameter.

수열처리에 의한 세리아가 코팅된 실리카 연마재의 제조 및 Oxide Film의 연마특성 (Preparation of Ceria Coated Silica Abrasive by Hydrothermal Treatment and Polishing Rate on Oxide Film)

  • 유대선;김대성;이승호
    • 한국재료학회지
    • /
    • 제15권12호
    • /
    • pp.818-823
    • /
    • 2005
  • Sub-micron colloidal silica particles coated with nano-sized ceria were prepared by mixing of its silica and cerium salts hydrolysis, and modified by hydrothermal reaction. By using the slurries with and without hydrothermal modification containing above particles, oxide film coated on silicon wafer was polished. The modified slurries had higher polish rate due to increase of ceria fraction to silica through hydrothermal reaction. They revealed higher stability in wide range of pH $2\~10$ than ceria coated silica slurries without its modification.

온도변화에 따른 나노 복합재료의 충격거동 (Impact behavior on temperature effect of nano composite materials)

  • 김형진;이정규;고성위
    • 수산해양기술연구
    • /
    • 제51권4호
    • /
    • pp.561-566
    • /
    • 2015
  • In this study, the effect of temperature effect of the rubber matrix filled with nano sized silica particles composites with silica volume fraction of 19-25% was investigated by the Charpy impact test. The Charpy impact test was conducted in the temperature range from $-40^{\circ}C$ to $0^{\circ}C$. The critical energy release rate GIC of the rubber matrix composites filled with nano sized silica particles was considerably affected by temperature and it was shown that the maximum value was appeared at higher temperature between temperature tested and it was shown that the value of GIC increases as temperature tested increases. The major fracture mechanisms were matrix deformation, silica particle debonding and delamination, microcrack between particles and matrix, and/or pull out between particles and matrix which is ascertained by SEM photographs of Charpy impact surfaces fracture.