• Title/Summary/Keyword: Nano pattern

Search Result 478, Processing Time 0.037 seconds

Nano-mold fabrication for imprinting lithography (나도 Imprinting 을 위한 몰드 제작에 관한 연구)

  • Lee, Jin-Hyung;Lim, Hyun-Uoo;Kim, Tae-Gon;Lee, Seung-Seoup;Park, Jin-Goo;Lee, Eun-Kyu;Kim, Yang-Sun;Han, Chang-Su
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1073-1077
    • /
    • 2003
  • This study aims to investigate the fabrication process of nano silicon mold using electron beam lithography (EBL) to generate the nanometer level patterns by nano-imprinting technology. the nano-patterned mold including 100mm pattern size has been fabricated by EBL with different doses ranged from 22 to 38 ${\mu}C/cm^2$ on silicon using the conventional polymethylmetharcylate(PMMA) resist. The silicon mold is fabricated with various patterns such as circles, rectangles, crosses, oblique lines and mixed forms, The effect of dosage on pattern density in EBL is discussed based on SEM (Scannning Electron Microscopy) analysis of fabricated molds. The mold surface is modified by hydrophobic fluorocarbon (FC) thin films to avoid the stiction during nano-imprinting process.

  • PDF

Fabrication of DLC Micro Pattern Roll Mold by Photolithography Process (포토 리소그래피 공정을 이용한 DLC 마이크로 패턴 원통 금형 제작)

  • Ha, T.G.;Kim, J.W.;Lee, T.D.;Yoon, S.J.;Kim, T.G.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.2
    • /
    • pp.63-67
    • /
    • 2018
  • Recent mold industry uses many roll-to-roll processes that can produce high production speed and precision machining and automation process. In the circular cylinder mold, however, patterns of less than $10{\mu}m$ are difficult to manufacture and maintain. In this study, we fabricated a circular cylindrical mold with a DLC thin film which have high hardness, low coefficient of friction and high releasability by using lithography and lift-off process. The height, line width, and pitch of the fabricated DLC macro pattern are $3.1{\mu}m$, $9.1{\mu}m$ and $20.2{\mu}m$, respectively. The pattern size is finer than the current applied to the aluminum cylinder type, and this shows the possibility of practical use of DLC micro pattern roll mold.

Bistable Liquid Crystal Device Realized on Microscopic Orientational Pattern

  • Kim, Jong-Hyun;Yoneya, Makoto;Yokoyama, Hiroshi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.187-190
    • /
    • 2005
  • Alignment pattern of checkerboard was constructed by the stylus of atomic force microscope. Orientational bistability of the nematic liquid crystal was realized on that frustrated surface alignment. Macroscopic orientational switching between two perpendicular directions took place by an appropriate in-plane electric field. The threshold electric fields decreased in both switching directions as temperature increased. The focused laser heated up only the limited domains in the cell including a light-absorbing medium. Irradiating the laser concurrently with an appropriate electric field, we switched the selected unit domains in the alignment pattern. The switched domains maintained stably the switched direction without the disturbance from the exterior. Extending and repeating this process, we realized extremely fine devices of bistable switching.

  • PDF

Replication of High Density Patterned Media (고밀도 패턴드 미디어 성형에 관한 연구)

  • Lee, Nam-Seok;Choi, Yong;Kang, Shin-Ill
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.2
    • /
    • pp.192-196
    • /
    • 2005
  • In this paper, we investigated the possibility of replicating patterned media by nano-injection molding process with a metallic nano-stamper. The original nano-master was fabricated by E-beam lithography and ICP etching process. The metallic nano-stamper was fabricated using a nanoimprint lithography and nano-electroforming process. The nano-patterned substrate was replicated using a nano-injection molding process without additional etching process. In nano-injection molding process, since the solidified layer, generated during the polymer filling, deteriorates transcribability of nano patterns by preventing the polymer melt from filling the nano cavities, an injection-mold system was constructed to actively control the stamper surface temperature using MEMS heater and sensors. The replicated polymeric patterns using nano-injection molding process were as small as 50 nm in diameter, 150 nm in pitch, and 50 nm in depth. The replicated polymeric patterns can be applied to high density patterned media.

  • PDF

PD Signal Time-Frequency Map and PRPD Pattern Analysis of Nano SiO2 Modified Palm Oil for Transformer Insulation Applications

  • Arvind Shriram, R.K.;Chandrasekar, S.;Karthik, B.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.902-910
    • /
    • 2018
  • In recent times, development of nanofluid insulation for power transformers is a hot research topic. Many researchers reported the enhancement in dielectric characteristics of nano modified mineral oils. Considering the drawbacks of petroleum based mineral oil, it is necessary to understand the dielectric characteristics of nanofluids developed with natural ester based oils. Palm oil has better insulation characteristics comparable to mineral oil. However very few research reports is available in the area of nanofluids based on palm oil. Partial discharge (PD) is one of the major sources of insulation performance degradation of transformer oil. It is essential to understand the partial discharge(PD) characteristics by collecting huge data base of PD performance of nano modified palm oil which will increase its confidence level for power transformer application. Knowing these facts, in the present work, certain laboratory experiments have been performed on PD characteristics of nano $SiO_2$ modified palm oil at different electrode configurations. Influence of concentration of nano filler material on the PD characteristics is also studied. Partial discharge inception voltage, Phase resolved partial discharge (PRPD) pattern, PD signal time-frequency domain characteristics, PD signal equivalent timelength-bandwidth mapping, Weibull distribution statistical parameters of PRPD pattern, skewness, repetition rate and phase angle variations are evaluated at different test conditions. From the results of the experiments conducted, we came to understand that PD performance of palm oil is considerably enhanced with the addition of $nano-SiO_2$ filler at 0.01%wt and 0.05%wt concentration. Significant reduction in PD inception voltage, repetition rate, Weibull shape parameter and PD magnitude are noticed with addition of $SiO_2$ nanofillers in palm oil. These results will be useful for recommending nano modified palm oil for power transformer applications.

Forming Properties of Micro Random Pattern Using Micro Abrasive Paper Tool by Roll to Plate Indentation Method (미세 지립 페이퍼 공구와 롤투플레이트 압입공정을 이용한 마이크로 랜덤 패턴의 성형특성)

  • Jeong, Ji-Young;Je, Tae-Jin;Moon, SeungHwan;Lee, Je-Ryung;Choi, Dae-Hee;Kim, Min-Ju;Jeon, Eun-chae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.5
    • /
    • pp.385-392
    • /
    • 2016
  • Recently in the display industry, demands for high-luminance and resolution of display devices have been steadily increasing. Generally, micro linear patterns are applied to an optical film in order to improve its properties of light. However, these patterns are easily viewed to eyes and moire phenomenon can be occurred. Micro random patterns are proposed as a method to solve these problems, increasing light-luminance and light-diffusion. However, conventional pattern manufacturing technologies have long processing times and high costs making it difficult to apply to large area molds. In order to combat this issue, micro-random patterns are formed by using a roll to plate indentation method along with abrasive paper tools composed of AlSiO2, SiC, and diamond grains. Also, forming properties, such as size and fill-factor of random patterns, are analyzed depending on type, mesh of abrasive paper tools, and indentation forces.

Replication of Patterned Media Using Nano-injection Molding Process (패턴드 미디어를 위한 나노 사출 성형 공정에 관한 연구)

  • Lee, Nam-Seok;Choi, Yong;Kang, Shin-Ill
    • Transactions of Materials Processing
    • /
    • v.14 no.7 s.79
    • /
    • pp.624-627
    • /
    • 2005
  • In this paper, we investigated the possibility of replicating patterned media by nano-injection molding process with a metallic nano-stamper. The original nano-master was fabricated by I-beam lithography and ICP etching process. The metallic nano-stamper was fabricated using a nanoimprint lithography and nano-electroforming process. Finally, the nano-patterned substrate was replicated using a nano-injection molding process without additional etching process. The replicated patterns using nano-injection molding process were as small as 50nm in diameter, 150nm in pitch, and 50nm in depth.

Replication of Patterned Media Using Nano-injection Molding Process (패턴드 미디어를 위한 나노 사출 성형 공정에 관한 연구)

  • Lee, Nam-Seok;Choi, Yong;Kang, Shin-Ill
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.60-63
    • /
    • 2005
  • In this paper, we investigated the possibility of replicating patterned media by nano-injection molding process with a metallic nano-stamper. The original nano-master was fabricated by E-beam lithography and ICP etching process. The metallic nano-stamper was fabricated using a nanoimprint lithography and nano-electroforming process. Finally, the nano-patterned substrate was replicated using a nano-injection molding process without additional etching process. The replicated patterns using nano-injection molding process were as small as 50 nm in diameter, 150 nm in pitch, and 50 nm in depth.

  • PDF

Effects of the mold surface heating methods for the DVD stamper with nano pattern on the transcription of the injection molded parts using COC and PMMA plastics (나노패턴을 갖는 DVD용 스템퍼의 표면가열방식이 COC, PMMA 수지를 이용한 사출성형품의 전사성에 미치는 영향)

  • 김동학;유홍진;김태완
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.3
    • /
    • pp.218-222
    • /
    • 2004
  • We developed the stamper structured mold with moving core type with nano pattern. Among the factors affecting the quality of injection molding plastic parts, We studied the effects of moving core surface heating method on the transcription of injection molding plastic parts with nano structures. Moving core surface heating has been tested by three different methods. The first was conventional injection molding process without heating moving core surface, the second was halogen lamp radiation heating process and the last was MmSH process using gas flame. As a result of making injection molded parts by using thermoplastic amorphous resins such as COC, PMMA, MmSH method which is the most high temperature of moving core surface showed the best nano pattern transcription of the three methods, but the outcome of conventional injection molding process was not better than others.

  • PDF