• Title/Summary/Keyword: Nano optical probe

Search Result 60, Processing Time 0.024 seconds

Development of microscopic surface profile estimation algorithm through reflected laser beam analysis (레이저 반사광 분석을 통한 미세 표면 프로파일 추정 알고리즘의 개발)

  • Seo Young-Ho;Ahn Jung-Hwan;Kim Hwa-Young;Kim Sun-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.11 s.176
    • /
    • pp.64-71
    • /
    • 2005
  • In order to measure surface roughness profile, stylus type equipments are commonly used, but the stylus keeps contact with surface and damages specimens by its tip pressure. Therefore, optics based measurement systems are developed, and light phase interferometer, which is based on light interference phenomenon, is the most noticeable research. However, light interference based measurements require translation mechanisms of nano-meter order in order to generate phase differences or multiple focusing, thus the systems cannot satisfy the industrial need of on-the-machine and in-process measurement to achieve factory automation and productive enhancement. In this research, we focused light reflectance phenomenon rather than the light interference, because reflectance based method do not need translation mechanisms. However, the method cannot direct]y measure surface roughness profile, because reflected light consists of several components and thus it cannot supply surface height information with its original form. In order to overcome the demerit, we newly proposed an image processing based algorithm, which can separate reflected light components and conduct parameterization and reconstruction process with respect to surface height information, and then confirmed the reliability of proposed algorithm by experiment.

Technology Trend of Next Generation Information Storage Systems (차세대 정보저장시스템 최신 기술 동향)

  • Park Young-Pil;Rhim Yun-Chul;Yang Hyun-Seok;Kang Shinill;Park No-Cheol;Kim Young-Joo
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.1
    • /
    • pp.1-22
    • /
    • 2005
  • There are two important trends in the modern information society, including digital networking and ubiquitous environment. Thus it is strongly required to develop new information storage devices such as high density storages to match the increased data capacity and small size storage devices to be applied to the mobile multimedia electronics. So far, many approaches have been studied for the high density memory, including the holographic memory, super-RENS and near-field recording using solid immersion lens (SIL) or nano-probe for the ODD (Optical Disk Drive) system, and the perpendicular magnetic recording and heat-assisted magnetic recording for the HDD (Hard Disk Drive) system. In addition, new mobile storage devices have been prepared using 0.85" HDD and 30mm ODD systems from a lot of foreign and domestic companies and institutes. In this paper, the recent technology trend for the next generation information storage system is summarized to offer a research motivation and encouragement to new researchers in this field with an emphasis on the technical issues of the increase of data capacity and decrease of device size.

  • PDF

Enhancement of Hardness and Moderation of Surface Defects of 14K, 18K Yellow Gold Alloy by Heat Treatment (열처리에 의한 14K, 18K yellow gold alloy의 경도 향상 및 표면 결함 완화)

  • Ahn, Ji-Hyun;Seo, Jin-Kyo;Ahn, Yoeng-Gil;Park, Jong-Wang
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.2
    • /
    • pp.86-90
    • /
    • 2010
  • In this study, we conducted heat treatment on 14K, 18K yellow gold alloy at various temperature conditions for improving their hardness and moderating their surface defects. Also after the heat treatment we used EPMA (Electron Probe Micro Analyzer), XRF (x-ray Fluorescence spectroscopy) for qualitative analysis and OM (optical microscope), SEM (scanning electron microscope) to investigate the changes of surface grain boundary. We used Vickers hardness tester to verify the changes of hardness. After the heat treatment, 14K, 18K gold alloys showed improved hardness and moderated surface defects at specific temperatures and duration.

Pitch Measurement of One-dimensional Gratings Using a Metrological Atomic Force Microscope and Uncertainty Evaluation (미터 소급성을 갖는 원자간력 현미경을 이용한 1차원 격자 피치 측정과 불확도 평가)

  • Kim Jong-Ahn;Kim Jae Wan;Park Byong Chon;Eom Tae Bong;Kang Chu-Shik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.84-91
    • /
    • 2005
  • We measured the pitch of one-dimensional (ID) grating specimens using a metrological atomic force microscope (M-AFM). The ID grating specimens a.e often used as a magnification standard in nano-metrology, such as scanning probe microscopy (SPM) and scanning electron microscopy (SEM). Thus, we need to certify the pitch of grating specimens fur the meter-traceability in nano-metrology. To this end, an M-AFM was setup at KRISS. The M-AFM consists of a commercial AFM head module, a two-axis flexure hinge type nanoscanner with built-in capacitive sensors, and a two-axis heterodyne interferometer to establish the meter-traceability directly. Two kinds of ID grating specimens, each with the nominal pitch of 288 nm and 700 nm, were measured. The uncertainty in pitch measurement was evaluated according to Guide to the Expression of Uncertainty in Measurement. The pitch was calculated from 9 line scan profiles obtained at different positions with 100 ㎛ scan range. The expanded uncertainties (k = 2) in pitch measurement were 0.10 nm and 0.30 nm for the specimens with the nominal pitch of 288 nm and 700 nm. The measured pitch values were compared with those obtained using an optical diffractometer, and agreed within the range of the expanded uncertainty of pitch measurement. We also discussed the effect of averaging in the measurement of mean pitch using M-AFM and main components of uncertainty.

Green Synthesis of Multifunctional Carbon Nanodots and Their Applications as a Smart Nanothermometer and Cr(VI) Ions Sensor

  • Li, Lu;Shao, Congying;Wu, Qian;Wang, Yunjian;Liu, Mingzhu
    • Nano
    • /
    • v.13 no.12
    • /
    • pp.1850147.1-1850147.14
    • /
    • 2018
  • In this work, water-soluble and blue-emitting carbon nanodots (CDs) were synthesized from apple peels for the first time via one-step hydrothermal method. The synthetic route is facile, green, economical and viable. The as-prepared CDs were characterized thoroughly by transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman, Fourier transform infrared (FT-IR), X-ray photoelectron (XPS), fluorescence and UV-Vis absorption spectroscopy in terms of their morphology, surface functional groups and optical properties. The results show that these CDs possessed ultrasmall size, good dispersivity, and high tolerance to pH, ionic strength and continuous UV irradiation. Significantly, the CDs had fast and reversible response towards temperature, and the accurate linear relationship between fluorescence intensity and temperature was used to design a novel nanothermometer in a broad temperature range from 5 to $65^{\circ}C$ facilely. In addition, the fluorescence intensity of CDs was observed to be quenched immediately by Cr(VI) ions based on the inner filter effect. A low-cost Cr(VI) ions sensor was proposed employing CDs as fluorescent probe, and it displayed a wide linear range from 0.5 to $200{\mu}M$ with a detection limit of $0.73{\mu}M$. The practicability of the developed Cr(VI) sensor for real water sample assay was also validated with satisfactory recoveries.

High Conductivity of Transparent SWNT Films on PET by Ionic Doping

  • Min, Hyung-Seob;Kim, Sang-sig;Choi, Won-Kook;Lee, Jeon-Kook
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.65-65
    • /
    • 2011
  • Single-well carbon nanotubes (SWNT) have been proposed as a promising candidate for various applications owing to their excellent properties. In particular, their fascinating electrical and mechanical properties could provide a new area for the development of advanced engineering materials. A transparent conductive thin film (TCF) has increased for applications such as liquid crystal displays, touch panels, and flexible displays. Indium tin oxide (ITO) thin films, which have been traditionally used as the TCFs, have a serious obstacle in TCFs applications. SWNTs are the most appropriate materials for conductive films for displays due to their excellent high mechanical strength and electrical conductivity. But, a bundle of CNTs has different electrical properties than their individual counterparts. In this work, the fabrication by the spraying process of transparent SWNT films and reduction of its sheet resistance on PET substrates is researched. Arc-discharge SWNTs were dispersed in deionized water by adding sodum dodecyl sulfate (SDS) as surfactant and sonicated, followed by the centrifugation. The dispersed SWNT was spray-coated on PET substrate and dried on a hotplate at $100^{\circ}C$. When the spray process was terminated, the TCF was immersed into deionized water to remove the surfactant and then it was dried on hotplate. The TCF film was then treated with ionic doping treatment, rinsed with deionized water and dried. The surface morphology of TCF was characterized by field emission scanning electron microscopy. The sheet resistance and optical transmission properties of the TCF were measured with a four-point probe method and a UV-visible spectrometry, respectively. Results, we show that 97 ${\Omega}$/> sheet resistance can be achieved with 81% transmittance at the wavelength of 550 nm. The changes in electrical and optical conductivity of SWNT film before and after ionic doping treatments were discussed.

  • PDF

Improved Conductivities of SWCNT Transparent Conducting Films on PET by Spontaneous Reduction

  • Min, Hyeong-Seop;Kim, Sang-Sik;Lee, Jeon-Guk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.43.2-43.2
    • /
    • 2011
  • Single-walled carbon nanotubes (SWCNT) are transparent in the visible and show conductivity comparable to copper, and are environmentally stable. SWCNT films have high flexibility, conductivity and transparency approaching that indium tin oxide (ITO), and can be prepared inexpensively without vacuum equipment. Transparent conducting Films (TCF) of SWCNTs has the potential to replace conventional transparent conducting oxides (TCO, e.g. ITO) in a wide variety of optoelectronic devices, energy conversion and photovoltaic industry. However, the sheet resistance of SWCNT films is still higher than ITO films. A decreased in the resistivity of SWCNT-TCFs would be beneficial for such an application. We fabricated SWCNT sheet with $KAuBr_4$ on PET substrate. Arc-discharge SWCNTs were dispersed in deionized water by adding sodum dodecyl sulfate (SDS) as surfactant and sonicated, followed by the centrifugation. The dispersed SWCNT was spray-coated on PET substrate and dried on a hotplate at $100^{\circ}C$. When the spray process was terminated, the TCF was immersed into deionized water to remove the surfactant and then it was dried on hotplate. The TCF film was then treated with AuBr4-, rinsed with deionized water and dried. The surface morphology of TCF was characterized by field emission scanning electron microscopy. The sheet resistance and optical transmission properties of the TCF were measured with a four-point probe method and a UV-visible spectrometry, respectively. $HNO_3$ treated SWCNT films with Au nano-particles have the lowest 61 ${\Omega}$/< sheet resistance in the 80% transmittance. Sheet resistance was decreased due to the increase of the hole concentration at the washed SWCNT surface by p-type doping of $AuBr_4{^-}$.

  • PDF

Application of black phosphorus nanodots to live cell imaging

  • Shin, Yong Cheol;Song, Su-Jin;Lee, Yu Bin;Kang, Moon Sung;Lee, Hyun Uk;Oh, Jin-Woo;Han, Dong-Wook
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.352-359
    • /
    • 2018
  • Background: Black phosphorus (BP) has emerged as a novel class of nanomaterials owing to its unique optical and electronic properties. BP, a two-dimensional (2D) nanomaterial, is a structure where phosphorenes are stacked together in layers by van der Waals interactions. However, although BP nanodots have many advantages, their biosafety and biological effect have not yet been elucidated as compared to the other nanomaterials. Therefore, it is particularly important to assess the cytotoxicity of BP nanodots for exploring their potentials as novel biomaterials. Methods: BP nanodots were prepared by exfoliation with a modified ultrasonication-assisted solution method. The physicochemical properties of BP nanodots were characterized by transmission electron microscopy, dynamic light scattering, Raman spectroscopy, and X-ray diffractometry. In addition, the cytotoxicity of BP nanodots against C2C12 myoblasts was evaluated. Moreover, their cell imaging potential was investigated. Results: Herein, we concentrated on evaluating the cytotoxicity of BP nanodots and investigating their cell imaging potential. It was revealed that the BP nanodots were cytocompatible at a low concentration, although the cell viability was decreased with increasing BP nanodot concentration. Furthermore, our results demonstrated that the cells took up the BP nanodots, and the BP nanodots exhibited green fluorescence. Conclusions: In conclusion, our findings suggest that the BP nanodots have suitable biocompatibility, and are promising candidates as fluorescence probes for biomedical imaging applications.

Characteristics of graphene sheets synthesized by the Thermo-electrical Pulse Induced Evaporation (전계 펄스 인가 증발 방법을 이용한 그라핀의 특성 연구)

  • Park, H.Y.;Kim, H.W.;Song, C.E.;Ji, H.J.;Choi, S.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.412-412
    • /
    • 2009
  • Carbon-based nano materials have a significant effect on various fields such as physics, chemistry and material science. Therefore carbon nano materials have been investigated by many scientists and engineers. Especially, since graphene, 2-dimemsonal carbon nanostructure, was experimentally discovered graphene has been tremendously attracted by both theoretical and experimental groups due to their extraordinary electrical, chemical and mechanical properties. Electrical conductivity of graphene is about ten times to that of silicon-based material and independent of temperature. At the same time silicon-based semiconductors encountered to limitation in size reduction, graphene is a strong candidate substituting for silicon-based semiconductor. But there are many limitations on fabricating large-scale graphene sheets (GS) without any defect and controlling chirality of edges. Many scientists applied micromechanical cleavage method from graphite and a SiC decomposition method to the fabrication of GS. However these methods are on the basic stage and have many drawbacks. Thereupon, our group fabricated GS through Thermo-electrical Pulse Induced Evaporation (TPIE) motivated by arc-discharge and field ion microscopy. This method is based on interaction of electrical pulse evaporation and thermal evaporation and is useful to produce not only graphene but also various carbon-based nanostructures with feeble pulse and at low temperature. On fabricating GS procedure, we could recognize distinguishable conditions (electrical pulse, temperature, etc.) to form a variety of carbon nanostructures. In this presentation, we will show the structural properties of OS by synthesized TPIE. Transmission Electron Microscopy (TEM) and Optical Microscopy (OM) observations were performed to view structural characteristics such as crystallinity. Moreover, we confirmed number of layers of GS by Atomic Force Microscopy (AFM) and Raman spectroscopy. Also, we used a probe station, in order to measure the electrical properties such as sheet resistance, resistivity, mobility of OS. We believe our method (TPIE) is a powerful bottom-up approach to synthesize and modify carbon-based nanostructures.

  • PDF

Back Surface Field Properties with Different Surface Conditions for Crystalline Silicon Solar Cells (후면 형상에 따른 결정질 실리콘 태양전지의 후면전계 형성 및 특성)

  • Kim, Hyun-Ho;Kim, Seong-Tak;Park, Sung-Eun;Song, Joo-Yong;Kim, Young-Do;Tark, Sung-Ju;Kwon, Soon-Woo;Yoon, Se-Wang;Son, Chang-Sik;Kim, Dong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.21 no.5
    • /
    • pp.243-249
    • /
    • 2011
  • To reduce manufacturing costs of crystalline silicon solar cells, silicon wafers have become thinner. In relation to this, the properties of the aluminium-back surface field (Al-BSF) are considered an important factor in solar cell performance. Generally, screen-printing and a rapid thermal process (RTP) are utilized together to form the Al-BSF. This study evaluates Al-BSF formation on a (111) textured back surface compared with a (100) flat back surface with variation of ramp up rates from 18 to $89^{\circ}C$/s for the RTP annealing conditions. To make different back surface morphologies, one side texturing using a silicon nitride film and double side texturing were carried out. After aluminium screen-printing, Al-BSF formed according to the RTP annealing conditions. A metal etching process in hydrochloric acid solution was carried out to assess the quality of Al-BSF. Saturation currents were calculated by using quasi-steady-state photoconductance. The surface morphologies observed by scanning electron microscopy and a non-contacting optical profiler. Also, sheet resistances and bulk carrier concentration were measured by a 4-point probe and hall measurement system. From the results, a faster ramp up during Al-BSF formation yielded better quality than a slower ramp up process due to temperature uniformity of silicon and the aluminium surface. Also, in the Al-BSF formation process, the (111) textured back surface is significantly affected by the ramp up rates compared with the (100) flat back surface.