• Title/Summary/Keyword: Nano machining technology

Search Result 111, Processing Time 0.022 seconds

Analysis on FIB-Sputtering Process using Taguchi Method (다구찌 기법을 이용한 FIB-Sputtering 가공 특성 분석)

  • Lee, Seok-Woo;Choi, Byoung-Yeol;Kang, Eun-Goo;Hong, Won-Pyo;Choi, Hon-Zong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.6
    • /
    • pp.71-75
    • /
    • 2006
  • The application of focused ion beam (FIB) technology in micro/nano machining has become increasingly popular. Its usage in micro/nano machining has advantages over contemporary photolithography or other micro/nano machining technologies such as small feature resolution, the ability to process without masks and being accommodating for a variety of materials and geometries. The target of this paper is the analysis of FIB sputtering process according to tilt angle, dwell time and overlap for application of 3D micro and pattern fabrication and to find the effective beam scanning conditions using Taguchi method. Therefore we make the conclusions that tilt angle is dominant parameter for sputtering yield. Burr size is reduced as tilt angle is higher.

Manufacturing Mechanism of FIB-CVD using Focused Ion Beam (집속이온빔의 가공 공정 메카니즘 연구)

  • 강은구;최병열;이석우;홍원표;최헌종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.925-928
    • /
    • 2004
  • The application of focused ion beam (FIB) technology in micro/nano machining has become increasingly popular. Its use in micro/nano machining has advantages over contemporary photolithography or other micro/nano machining technologies such as small feature resolution, the ability to process without masks and being accommodating for a variety of materials and geometries. This paper was carried out some experiments and verifications of mechanism on FIB-CVD using SMI8800 made by Seiko. FIB-CVD has in fact proved to be commercially useful for repair processes because the beam can be focused down to 0.05$\mu\textrm{m}$ dimensions and below and because the same tool can be used to sputter off material with sub-micrometer precision simply by turning off the gas ambient. Recently the chemical vapour deposition induced ion beam has been required more deposition rate and accurate pattern because of trying to manufacture many micro and nano parts. Therefore this paper suggested the optimization parameters and discussed some mechanism of chemical vapour deposition induced ion beam on FIB-CVD for simple pattern.

  • PDF

Characteristic of Ductile Regime AFM Machining Using Acoustic Emission (AE를 이용한 AFM 연성 영역 가공 특성 연구)

  • Ahn Byoung-Woon;Lee Kwang-Ho;Lee Seoung-Hwan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.4
    • /
    • pp.15-21
    • /
    • 2006
  • Recently, atomic force microscope(AFM) with suitable tips is being used for nano fabrication/nanometric machining purposes. In this paper, acoustic emission(AE) was introduced to monitor the nanometric machining of brittle materials(silicon) using AFM. In the experiments, AE responses were sampled, as the tip load was linearly increased(ramped load), to investigate the machining characteristics during a continuous movement. By analyzing the experimental results, it can be concluded that measured AE energy is sensitive to changes in the mechanism of material removal including the ductile-brittle transition during the nanometric machining. The critical depth of cut value for the transition is evaluated and discussed.

Nano-surface Machining Technology of Tungsten Carbide Blade for MLCC Cutting Process (MLCC 절단용 초경합금 칼날의 나노표면 가공 기술)

  • Kang, Byung-Ook;Shin, Gun-hwi;Kwak, Tae-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.11
    • /
    • pp.41-46
    • /
    • 2019
  • The purpose of this study is to examine and propose a high quality blade manufacturing method by applying ELID grinding technology to machining the tungsten carbide blade edge for MLCC sheet cutting. In this study, experiments are performed according to the abrasive type of grinding wheel, grinding method and grinding direction using the non-stop continuous dressing ELID grinding technology. By comparing and analyzing the chipping phenomena and surface roughness of both the blade grinding surface and the processed surface, a method for machining the tungsten carbide blade for cutting MLCC sheet is proposed. From the analysis of the surface roughness and chipping phenomena, it is confirmed that the use of diamond abrasive is advantageous for the blade machining. In addition, it succeeds in the machining of $6{\mu}m$ fine blade without any chipping, by using the grinding wheel #4000 with the diamond abrasive.

The Development of Micro Milling Machine (초소형 밀링머신 개발)

  • Hwang J.;Chung E.S.;Cox Danel;Liang StevenY.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1171-1174
    • /
    • 2005
  • Manufacturing capability at the micro or nano scale production field is requested strongly in view of parts and product miniaturization. Miniaturized parts and products will introduce lots of benefits in terms of high precision functionality and low energy consumption. This paper presents the results of micro milling machine tool development for micro machining process. Finite element analysis has been performed to know the relationship between design dimensional variables and structural stiffness in terms of static, dynamic, thermal aspects. Performance evaluation through machining has been tested and discussed for achievable machining characteristics.

  • PDF

Trends of Flat Mold Machining Technology with Micro Pattern (미세패턴 평판 금형가공 기술동향)

  • Je, Tae-Jin;Choi, Doo-Sun;Jeon, Eun-Chae;Park, Eun-Suk;Choi, Hwan-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.1-6
    • /
    • 2012
  • Recent ultra-precision machining systems have nano-scale resolution, and can machine various shapes of complex structures using five-axis driven modules. These systems are also multi-functional, which can perform various processes such as planing, milling, turning et al. in one system. Micro machining technology using these systems is being developed for machining fine patterns, hybrid patterns and high aspect-ratio patterns on large-area molds with high productivity. These technology is and will be applied continuously to the fields of optics, display, energy, bio, communications and et al. Domestic and foreign trends of micro machining technologies for flat molds were investigated in this study. Especially, we focused on the types and the characteristics of ultra-precision machining systems and application fields of micro patterns machined by the machining system.

Study on Ductile Machining Technology for Manufacturing Nano-Patterns on Single Crystal Silicon through Quantitative Analysis of Thrust Force (배분력의 정량적인 분석을 통한 단결정실리콘의 나노패턴 연성가공법 연구)

  • Choi, Dae-Hee;Jeon, Eun-chae;Yoon, Min-Ah;Kim, Kwang-Seop;Je, Tae-Jin;Jeong, Jun-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.1
    • /
    • pp.11-16
    • /
    • 2016
  • Lithography techniques are generally used to manufacture nano-patterns on silicon, however, it is difficult to make a V-shaped pattern using these techniques. Although silicon is a brittle material, it can be treated as a ductile material if mechanically machined at extremely low force scale. The manufacturing technique of nano-patterns on single crystal silicon using a mechanical method was developed in this study. First, the linear pattern was machined on the silicon with increasing thrust force. Then, the correlation between measured cutting force and machined pattern was analyzed. Based on the analysis, the critical thrust force was quantitatively determined, and then the silicon was machined at a force lower than the critical thrust force. The machined pattern was observed using SEM and AFM to check for the occurrence of brittle fractures. Finally, the sharp V-shaped nano-pattern was manufactured on the single crystal silicon.

The Development of Micro Milling Machine for Micro Machining (미소가공을 위한 마이크로 밀링머신 개발)

  • Hwang Joon
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.278-281
    • /
    • 2005
  • Today, manufacturing capability at the micro or nano scale production field is requested strongly in view of parts and product miniaturization. Miniaturized parts and products will introduce lots of benefits in terms of high precision functionality and low energy consumption. This paper presents the results of micro milling machine tool development for micro machining process. Finite element analysis has been performed to know the relationship between design dimensional variables and structural stiffness in terms of static, dynamic, thermal aspects. Performance evaluation through machining has been tested and discussed for achievable machining characteristics.

  • PDF

Fabrication of Nano Composites Using Hybrid Rapid Prototyping (하이브리드 쾌속 조형을 이용한 나노 복합재의 조형)

  • Chu W.S.;Kim S.G.;Ahn S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.757-760
    • /
    • 2005
  • The technology of rapid prototyping (RP) is used for design verification, function test and fabrication of prototype. The current issues in RP are improvement in accuracy and application of various materials. In this paper, a hybrid rapid prototyping system is introduced which can fabricate nano composites using various materials. This hybrid system adopts RP and machining process, so material deposition and removal is performed at the same time in a single station. As examples, micro gears and a composite scaffold were fabricated using photo cured polymer with nano powders such as carbon black and hydroxyapatite. From the micro gear samples the hybrid RP technology showed higher precision than those made by casting or deposition process.

  • PDF

Realization of 3D Image on Metal Plate by Optimizing Machining Conditions of Ultra-Precision End-Milling (초정밀 엔드밀링 가공조건 최적화를 통한 금속상의 3차원 이미지 구현)

  • Lee, Je-Ryung;Moon, Seung Hwan;Je, Tae-Jin;Jeong, Jun-Ho;Kim, Hwi;Jeon, Eun-chae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.11
    • /
    • pp.885-891
    • /
    • 2016
  • 3D images are generally manufactured by complex production processes. We suggested a simple method to make 3D images based on a mechanical machining technology in this study. We designed a tetrahedron consisted of many arcs having the depth of $100{\mu}m$ and the pitch of $500{\mu}m$, and machined them on an aluminum plate using end-milling under several conditions of feed-rate and depth of cut. The area of undeformed chip including depth of cut and feed-rate can predict quality of the machined arcs more precisely than the undeformed chip thickness including only feed rate. Moreover, a diamond tool can improve the quality than a CBN tool when many arcs are machined. Based on the analysis, the designed tetrahedron having many arcs was machined with no burr, and it showed different images when observed from the left and right directions. Therefore, it is verified that a 3D image can be designed and manufactured on a metal plate by end-milling under optimized machining conditions.