• Title/Summary/Keyword: Nano composites

Search Result 648, Processing Time 0.028 seconds

Thermal and Mechanical Properties of Flame Retardant ABS Nanocomposites Containing Organo-Modified Layered Double Hydoxide (유기변성 LDH를 사용한 난연 ABS 나노복합재료의 열적 및 기계적 물성)

  • Kim, Seog-Jun
    • Elastomers and Composites
    • /
    • v.43 no.4
    • /
    • pp.241-252
    • /
    • 2008
  • ZnAl-LDH(layered double hydroxide) modified with oleic acid(SO-ZnAl LDH) was synthesized and added to the flame retardant ABS compounds containing brominated epoxy resin(BER) and antimony trioxide(${Sb_2}{O_3}$). Flame retardant ABS compounds were manufactured by using a twin-screw co-rotating extruder and subsequently injection molded into several specimen for flame retardancy and mechanical properties. The XRD patterns of ABS nanocomposites showed no peaks. The thermal stability of ABS nanocomposites was enhanced by the addition of SO-ZnAl LDH as shown in TGA results. However, these nanocomposites showed no rating in the UL 94 vertical test at 1.6 mm thickness. Only ABS nanocomposites with additional BER more than 1.5 wt% showed UL 94 V0 rating. Notched Izod impact strength, tensile modulus, and elongation at break of flame retardant ABS nanocomposites increased with the proportion of So-ZnAl LDH whereas their melt index decreased.

One-step microwave synthesis of magnetic biochars with sorption properties

  • Zubrik, Anton;Matik, Marek;Lovas, Michal;Stefusova, Katarina;Dankova, Zuzana;Hredzak, Slavomir;Vaclavikova, Miroslava;Bendek, Frantisek;Briancin, Jaroslav;Machala, Libor;Pechousek, Jiri
    • Carbon letters
    • /
    • v.26
    • /
    • pp.31-42
    • /
    • 2018
  • Adsorption is one of the best methods for wastewater purification. The fact that water quality is continuously decreasing requires the development of novel, effective and cost available adsorbents. Herein, a simple procedure for the preparation of a magnetic adsorbent from agricultural waste biomass and ferrofluid has been introduced. Specifically, ferrofluid mixed with wheat straw was directly pyrolyzed either by microwave irradiation (900 W, 30 min) or by conventional heating ($550^{\circ}C$, 90 min). Magnetic biochars were characterized by X-ray powder diffraction, $M{\ddot{o}}ssbauer$ spectroscopy, textural analysis and tested as adsorbents of As(V) oxyanion and cationic methylene blue, respectively. Results showed that microwave pyrolysis produced char with high adsorption capacity of As(V) ($Q_m=25.6mg\;g^{-1}$ at pH 4), whereas conventional pyrolysis was not so effective. In comparison to conventional pyrolysis, one-step microwave pyrolysis produced a material with expressive microporosity, having a nine times higher value of specific surface area as well as total pore volume. We assumed that sorption properties are also caused by several iron-bearing composites identified by $M{\ddot{o}}ssbauer$ spectroscopy ([super] paramagnetic $Fe_2O_3$, ${\alpha}-Fe$, non-stoichiometric $Fe_3C$, ${\gamma}-Fe_2O_3$, ${\gamma}-Fe$) transformed from nano-maghemite presented in the ferrofluid. Methylene blue was also more easily removed by magnetic biochar prepared by microwaves ($Q_m=144.9mg\;g^{-1}$ at pH 10.9) compared to using conventional techniques.

Semiconductor type micro gas sensor for $H_2$ detection using a $SnO_2-Ag_2O-PtO_x$ system by screen printing technique (스크린 프린팅 기법을 이용한 $SnO_2-Ag_2O-PtO_x$계 반도체식 마이크로 수소 가스센서에 관한 연구)

  • Kim, Il-Jin;Han, Sang-Do;Lee, Hi-Deok;Wang, Jin-Suk
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.1
    • /
    • pp.69-74
    • /
    • 2006
  • Thick film $H_2$ sensors were fabricated using $SnO_2$ loaded with $Ag_2O$ and $PtO_x$. The composition that gave the highest sensitivity for $H_2$ was in the weight% ratio of $SnO_2 : PtO_x : Ag_2O$ as 93 : 1 : 6. The nano-crystalline powders of $SnO_2$ synthesized by sol-gel method were screen printed with $Ag_2O$ and $PtO_x$ on alumina substrates. The fabricated sensors were tested against gases like $H_2$, $CH_4$, $C_3H_8$, $C_2H_5OH$ and $SO_2$. The composite material was found sensitive against $H_2$ at the working temperature $130^{\circ}C$, with minor interference of other gases. The $H_2$ gas as low as 100 ppm can be detected by the present fabricated sensors. It was found that the sensors based on $SnO_2-Ag_2O-PtO_x$ system exhibited the high performance, high selectivity and very short response time to $H_2$ at ppm level. These characteristics make the sensor to be a promising candidate for detecting low concentrations of $H_2$.

Cobalt Oxide-Tin Oxide Composite: Polymer-Assisted Deposition and Gas Sensing Properties (PAD법으로 제작된 산화코발트-산화주석 복합체의 가스 감응 특성)

  • An, Sea-Yong;Li, Wei;Jang, Dong-Mi;Jung, Hyuck;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.611-616
    • /
    • 2010
  • A cobalt oxide - tin oxide nanocomposite based gas sensor on an $SiO_2$ substrate was fabricated. Granular thin film of tin oxide was formed by a rheotaxial growth and thermal oxidation method using dc magnetron sputtering of Sn. Nano particles of cobalt oxide were spin-coated on the tin oxide. The cobalt oxide nanoparticles were synthesized by polymer-assisted deposition method, which is a simple cost-effective versatile synthesis method for various metal oxides. The thickness of the film can be controlled over a wide range of thicknesses. The composite structures thus formed were characterized in terms of morphology and gas sensing properties for reduction gas of $H_2$. The composites showed a highest response of 240% at $250^{\circ}C$ upon exposure to 4% $H_2$. This response is higher than those observed in pure $SnO_2$ (90%) and $Co_3O_4$ (70%) thin films. The improved response with the composite structure may be related to the additional formation of electrically active defects at the interfaces. The composite sensor shows a very fast response and good reproducibility.

Synthesis and Properties of Exfoliated Poly(methyl methacrylate-co-acrylonitrile)/Clay Nanocomposites via Emulsion Polymerization

  • Mingzhe Xu;Park, Yeong-Suk;Wang, Ki-Hyun;Kim, Jong-Hyun;Chung, In-Jae
    • Macromolecular Research
    • /
    • v.11 no.6
    • /
    • pp.410-417
    • /
    • 2003
  • Poly(methyl methacrylate-co-acrylonitrile) [P(MMA-co-AN)]/Na-MMT nanocomposites were synthesized through emulsion polymerization with pristine Na-MMT. The nanocomposites were exfoliated up to 20 wt% content of pristine Na-MMT relative to the amount of MMA and AN, and exhibited enhanced storage moduli, E', relative to the neat copolymer. The exfoliated morphology of the nanocomposite was confirmed by XRD and TEM. 2-Acryla-mido-2-methyl-1-propane sulfonic acid (AMPS) widened the galleries between the clay layers before polymerization and facilitated the comonomers, penetration into the clay to create the exfoliated nanocomposites. The onset of the thermal decomposition of the nanocomposites shifted to a higher temperature as the clay content increased. By calculating areas of tan$\delta$ of the nanocomposites, we observed that the nanocomposites show more solid-like behavior as the clay content increases. The dynamic storage modulus and complex viscosity increased with clay content. The complex viscosity showed shear-thinning behavior as the clay content increased. The Young's moduli of the nano-composites are higher than that of the neat copolymer and they increase steadily as the silicate content increases, as a result of the exfoliated structure at high clay content.

Microstructure Effects on Bending Strength Characteristics of LPS - SiC Ceramic (LPS - SiC 세라믹스의 굽힘강도 특성에 미치는 미시조직 영향)

  • Yoon, Han-Ki;Jung, Hun-Chae
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.5 s.72
    • /
    • pp.77-81
    • /
    • 2006
  • In this study, monolithic liquid phase sintered SiC (LPS-SiC) was made by the hot pressing method with nano-SiC powder, whose particle size is 30 nm and less on the average. Alumina ($Al_{2}O_{3}$), yttria ($Y_{2}O_{3}$), and silica ($S_{i}O_{2}$) were used for sintering additives. To investigate the effects of $S_{i}O_{2}$, the $Al_{2}O_{3}/Y_{2}O_{3}$ composition was fixed and the ratio of $S_{i}O_{2}$ was changed, with seven different ratios tested. And to investigate the effects of the sintering temperature, the sintering temperature was changed, with $1760^{\circ}C,\;1780_{\circ}C$, and $1800_{\circ}C$ being used with a $S_{i}O_{2}$ ratio of 3 wt%. The materials were sintered for 1 hour at $1760^{\circ}C,\;1780^{\circ}C$ and $1800^{\circ}C$ under a pressure of 20 MPa. The effects on sintering from the sintering system used, as well as from the composition of the sintering additives, were investigated by density measurements. Mechanical properties, such as flexural strength, were investigated to ensure the optimum conditions for a matrix of SiCf/SiC composites. Sintered densityand the flexural strength of fabricated LPS-SiC increased with an increase in sintering temperature. Particularly, the relative density of a sintered body at $1800^{\circ}C$ with a non-content of $S_{i}O_{2}$, a specimen of AYSO-1800, was 95%. Also, flexural strength was about 750MPa.

Influence of Ozone Treatment on the Surface Characteristics of Montmorillonite and the Thermal Stability of Montmorillonite/polypropylene Nanocomposites (오존처리가 몬모릴로나이트의 표면특성 및 몬모릴로나이트/폴리프로필렌 나노복합재료의 열안정성에 미치는 영향)

  • Jin Sung-Yeol;Lee Jae-Rock;Park Soo-Jin
    • Composites Research
    • /
    • v.18 no.1
    • /
    • pp.23-29
    • /
    • 2005
  • In this work, the effect of ozone treatment of montmorillonite (MMT) on the surface characteristics of montmorillonite and the thermal stability of MMT/polypropylene (PP) nanocomposites was investigated. The surface properties of MMT were determined by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and X-ray photoelectron spectroscopy (XPS). Also, the thermal stability of nanocomposites was investigated in thermogravimetric analysis (TGA). As a result, it was found that the silicate interlayers of the organically modified MMT (D-MMT) were increased by about 11${\AA}$, as compared with the MMT. Also, FT-IR showed that a new peaks at $2800\~2900\;cm^{-1}$ appeared due to the $CH_2$ mode in the D-MMT The ozone treatment of the MMT led to an increase of SiO or $SiO_2$ groups on MMT surfaces, resulting in increasing the oxygen-containing functional groups on MMT. The ozonized MMT had higher thermal stability than that of untreated nanocomposites. This was due to the improvement of interfacial bonding strengths, resulting from the acid-base interfacial interactions between PP and MMT.

Effect of Space Charge Density and High Voltage Breakdown of Surface Modified Alumina Reinforced Epoxy Composites

  • Chakraborty, Himel;Sinha, Arijit;Chabri, Sumit;Bhowmik, Nandagopal
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.3
    • /
    • pp.121-124
    • /
    • 2013
  • The incorporation of 90 nm alumina particles into an epoxy matrix to form a composite microstructure is described in present study. It is shown that the use of ultrafine particles results in a substantial change in the behavior of the composite, which can be traced to the mitigation of internal charges when a comparison is made with conventional $Al_2O_3$ fillers. A variety of diagnostic techniques have been used to augment pulsed electro-acoustic space charge measurement to provide a basis for understanding the underlying physics of the phenomenon. It would appear that, when the size of the inclusions becomes small enough, they act cooperatively with the host structure and cease to exhibit interfacial properties. It is postulated that the $Al_2O_3$ particles are surrounded by high charge concentrations. Since $Al_2O_3$ particles have very high specific areas, these regions allow limited charge percolation through $Al_2O_3$ filled dielectrics. The practical consequences of this have also been explored in terms of the electric strength exhibited. It would appear that there was a window in which real advantages accumulated from the nano-formulated material. An optimum filler loading of about 0.5 wt.% was indicated.

A Study on Prediction of Effective Thermal Conductivity of Nano-Fluids Using Generalized Self-Consistent Model and Modified Eshelby Model (일반화된 자기일치모델과 수정된 에쉘비 모델을 이용한 나노유체의 등가열전도계수 예측에 대한 연구)

  • Lee, Jae-Kon;Kim, Jin Gon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.10
    • /
    • pp.887-894
    • /
    • 2013
  • Effective thermal conductivity of nanofluids has been predicted by using generalized self-consistent model and modified Eshelby model, which have been used for analysis of material properties of composites. A nanolayer between base fluid and nanoparticle, one of key factors for abrupt enhancement of thermal conductivity of nanofluids, is included in the analysis. The effective thermal conductivities of the nanofluid predicted by the present study show good agreement with those by models in the literature for the nanolayer with a constant or linear thermal conductivity. The predicted results by the present approach have been confirmed to be consistent with experiments for representative nanofluids such as base fluids of water or ethyleneglycol and nanoparticles of $Al_2O_3$ or CuO to be validated.

Effect of SiC and WC additon on Oxidation Behavior of Spark-Plasma-Sintered ZrB2

  • Kim, Chang-Yeoul;Choi, Jae-Seok;Choi, Sung-Churl
    • Journal of Powder Materials
    • /
    • v.26 no.6
    • /
    • pp.455-462
    • /
    • 2019
  • ZrB2 ceramic and ZrB2 ceramic composites with the addition of SiC, WC, and SiC/WC are successfully synthesized by a spark plasma sintering method. During high-temperature oxidation, SiC additive form a SiO2 amorphous outer scale layer and SiC-deplete ZrO2 scale layer, which decrease the oxidation rate. WC addition forms WO3 during the oxidation process to result in a ZrO2/WO3 liquid sintering layer, which is known to improve the anti-oxidation effect. The addition of SiC and WC to ZrB2 reduces the oxygen effective diffusivity by one-fifth of that of ZrB2. The addition of both SiC and WC shows the formation of a SiO2 outer dense glass layer and ZrO2/WO3 layer so that the anti-oxidation effect is improved three times as much as that of ZrB2. Therefore, SiC- and WC-added ZrB2 has a lower two-order oxygen effective diffusivity than ZrB2; it improves the anti-oxidation performance 3 times as much as that of ZrB2.