Browse > Article
http://dx.doi.org/10.4150/KPMI.2019.26.6.455

Effect of SiC and WC additon on Oxidation Behavior of Spark-Plasma-Sintered ZrB2  

Kim, Chang-Yeoul (Nano- Material and Process Center, Korea Institute of Ceramic Engineering and Technology)
Choi, Jae-Seok (Dept. of Material Sci. & Eng. Hanyang University)
Choi, Sung-Churl (Dept. of Material Sci. & Eng. Hanyang University)
Publication Information
Journal of Powder Materials / v.26, no.6, 2019 , pp. 455-462 More about this Journal
Abstract
ZrB2 ceramic and ZrB2 ceramic composites with the addition of SiC, WC, and SiC/WC are successfully synthesized by a spark plasma sintering method. During high-temperature oxidation, SiC additive form a SiO2 amorphous outer scale layer and SiC-deplete ZrO2 scale layer, which decrease the oxidation rate. WC addition forms WO3 during the oxidation process to result in a ZrO2/WO3 liquid sintering layer, which is known to improve the anti-oxidation effect. The addition of SiC and WC to ZrB2 reduces the oxygen effective diffusivity by one-fifth of that of ZrB2. The addition of both SiC and WC shows the formation of a SiO2 outer dense glass layer and ZrO2/WO3 layer so that the anti-oxidation effect is improved three times as much as that of ZrB2. Therefore, SiC- and WC-added ZrB2 has a lower two-order oxygen effective diffusivity than ZrB2; it improves the anti-oxidation performance 3 times as much as that of ZrB2.
Keywords
Oxidation; High temperature ceramic; Zirconium diboride; Diffusivity; Thermal degradation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. Monteverde and A. Bellosi: J. Electrochem. Soc., 150 (2003) B552.   DOI
2 W. C. Tripp and H. C. Graham: J. Electrochem. Soc., 118 (1971) 1195.   DOI
3 A. Rezaie, W. G. Fahrenholtz and G. E. Hilmas: J. Eur. Ceram. Soc., 27 (2007) 2495.   DOI
4 G.-J. Zhang, Z.-Y. Deng, N. Kondo, J.-F. Yang and T. Ohji: J. Am. Ceram. Soc., 83 (2000) 2330.   DOI
5 S. S. Hwang, A. L. Vasiliev and N. P. Padture: Mater. Sci. Eng. A, 464 (2007) 216.   DOI
6 J. Han, P. Hu, X. Zhang and S. Meng: Scr. Mater., 57 (2007) 825.   DOI
7 S. N. Karlsdottir and J. W. Halloran: J. Am. Ceram. Soc., 92 (2009) 481.   DOI
8 W.-M. Guo and G.-J. Zhang: J. Eur. Ceram. Soc., 30 (2010) 2387.   DOI
9 W. G. Fahrenholtz: J. Am. Ceram. Soc., 90 (2007) 143.   DOI
10 M. Mallik, K. K. Ray and R. Mitra: J. Eur. Ceram. Soc., 31 (2011) 199.   DOI
11 S. C. Zhang, G. E. Hilmas and W. G. Fahrenholtz: J. Am. Ceram. Soc., 91 (2008) 3530.   DOI
12 S. C. Zhang, G. E. Hilmas and W. G. Fahrenholtz: J. Am. Ceram. Soc., 94 (2011) 1198.   DOI
13 J. Zou, S.-K. Sun, G.-J. Zhang, Y.-M. Kan, P.-L. Wang and T. Ohji: J. Am. Ceram. Soc., 94 (2011) 1575.   DOI
14 J. Zou, G.-J. Zhang, C.-F. Hu, T. Nishimura, Y. Sakka, J. Vleugels and O. Van der Biest: J. Am. Ceram. Soc., 95 (2012) 874.   DOI
15 T. A. Parthasarathy, R. A. Rapp, M. Opeka and R. J. Kerans: J. Am. Ceram. Soc., 92 (2009) 1079.   DOI
16 T. A. Parthasarathy, R. A. Rapp, M. Opeka and R. J. Kerans: Acta Mater., 55 (2007) 5999.   DOI