Synthesis and Properties of Exfoliated Poly(methyl methacrylate-co-acrylonitrile)/Clay Nanocomposites via Emulsion Polymerization

  • Mingzhe Xu (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology(KAIST)) ;
  • Park, Yeong-Suk (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology(KAIST)) ;
  • Wang, Ki-Hyun (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology(KAIST)) ;
  • Kim, Jong-Hyun (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology(KAIST)) ;
  • Chung, In-Jae (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology(KAIST))
  • Published : 2003.12.01

Abstract

Poly(methyl methacrylate-co-acrylonitrile) [P(MMA-co-AN)]/Na-MMT nanocomposites were synthesized through emulsion polymerization with pristine Na-MMT. The nanocomposites were exfoliated up to 20 wt% content of pristine Na-MMT relative to the amount of MMA and AN, and exhibited enhanced storage moduli, E', relative to the neat copolymer. The exfoliated morphology of the nanocomposite was confirmed by XRD and TEM. 2-Acryla-mido-2-methyl-1-propane sulfonic acid (AMPS) widened the galleries between the clay layers before polymerization and facilitated the comonomers, penetration into the clay to create the exfoliated nanocomposites. The onset of the thermal decomposition of the nanocomposites shifted to a higher temperature as the clay content increased. By calculating areas of tan$\delta$ of the nanocomposites, we observed that the nanocomposites show more solid-like behavior as the clay content increases. The dynamic storage modulus and complex viscosity increased with clay content. The complex viscosity showed shear-thinning behavior as the clay content increased. The Young's moduli of the nano-composites are higher than that of the neat copolymer and they increase steadily as the silicate content increases, as a result of the exfoliated structure at high clay content.

Keywords

References

  1. Chem. Mater. v.6 T.Lan;T.J.Pinnavais https://doi.org/10.1021/cm00048a006
  2. Chem. Mater. v.6 P.Messersmith;E.P.Giannelis https://doi.org/10.1021/cm00046a026
  3. J. Polym. Sci., Polym. Chem. v.31 K.Yano;A.Usuki;A.Okada;T.Kurauchi;O.Kamigaito https://doi.org/10.1002/pola.1993.080311009
  4. J. Mater. Res. v.8 A.Usuki;M.Kawasumi;Y.Kojima;A.Okada;T.Kurauchi;O.Kamigaito https://doi.org/10.1557/JMR.1993.1174
  5. J. Appl. Polym. Sci. v.61 D.C.Lee;L.W.Jang https://doi.org/10.1002/(SICI)1097-4628(19960815)61:7<1117::AID-APP7>3.0.CO;2-P
  6. Macrololecules v.34 X.Huang;W.J.Brittain https://doi.org/10.1021/ma001670s
  7. Mater. Lett. v.42 X.Fu;S.Qutubuddin https://doi.org/10.1016/S0167-577X(99)00151-2
  8. Macromolecules v.33 X.Huang;S.Lewis;W.J.Brittain https://doi.org/10.1021/ma991709x
  9. Chem. Commun. J.S.Bergman;H.Chen;E.P.Giannelis;M.G.Thomas;G.W.Coates
  10. Polymer Bulletin v.46 K.H.Wang;M.Xu;Y.S.Choi;I.J.Chung https://doi.org/10.1007/s002890170038
  11. J. Polym. Sci., Part B: Polym. Phys. v.40 K.H.Wang;M.H.Choi;C.M.Koo;M.Xu;I.J.Chung;M.C.Jang;S.W.Choi;H.H.Song https://doi.org/10.1002/polb.10201
  12. Adv. Mater. v.12 J.M.Garces;D.J.Moll;J.Bicerano;R.Fibiger;D.G.McLeod https://doi.org/10.1002/1521-4095(200012)12:23<1835::AID-ADMA1835>3.0.CO;2-T
  13. Macromolecules v.34 G.Galgali;C.Ramesh;A.Lele https://doi.org/10.1021/ma000565f
  14. Macromolecules v.34 M.J.Solomon;A.S.Almusallam;K.F.Seefeldt;A.Somwangthanaroj;P.Varadan https://doi.org/10.1021/ma001122e
  15. Chem. Mater. v.10 Z.Wang;T.J.Pinnavaia https://doi.org/10.1021/cm980448n
  16. Chem. Mater. v.12 H.Ishida;S.Campbell;J.Backwell https://doi.org/10.1021/cm990479y
  17. Chem. Mater. v.12 J.M.Brown;D.Curliss;R.A.Vaia https://doi.org/10.1021/cm000477+
  18. Chem. Mater. v.13 H.L.Tyan;C.M.Leu;K.H.Wei https://doi.org/10.1021/cm000560x
  19. Chem. Mater. v.12 M.H.Choi;I.J.Chung;J.D.Lee https://doi.org/10.1021/cm000227t
  20. Macromol. Res. v.10 no.4 J.G.Ryu;J.W.Lee;H.Kim https://doi.org/10.1007/BF03218304
  21. Chem. Mater. v.13 N.Sukpirom;M.M.Lerner https://doi.org/10.1021/cm0101226
  22. Chem. Mater. v.13 H.Y.Byun;M.H.Choi;I.J.Chung https://doi.org/10.1021/cm0102685
  23. Langmir v.16 L.Liang;J.Liu;X.Gong https://doi.org/10.1021/la000270v
  24. Macromolecules v.34 Y.S.Choi;M.H.Choi;K.H.Wang;S.O.Kim;Y.K.Kim;I.J.Chung https://doi.org/10.1021/ma0106494
  25. Chem. Mater. v.14 Y.S.Choi;K.H.Wang;M.Xu;I.J.Chung https://doi.org/10.1021/cm0116020
  26. Macromolecules v.25 M.Seki;Y.Morishima;M.Kamachi https://doi.org/10.1021/ma00050a024
  27. J. Polym. Sci., Polym. Chem. v.33 P.B.Messersmith;E.P.Giannelis https://doi.org/10.1002/pola.1995.080330707
  28. Mechanical Properties of Solid Polymers ($2^{nd}$ ed.) I.M.Ward
  29. Mater. Sci. Eng. v.28 M.Alexandre;P.Dubois https://doi.org/10.1016/S0927-796X(00)00012-7